4,807 research outputs found

    Dynamic equilibrium sets atomic content of galaxies across cosmic time

    Get PDF
    We analyze 88 independent high-resolution cosmological zoom-in simulations of disk galaxies in the NIHAO simulations suite to explore the connection between the atomic gas fraction and angular momentum of baryons throughout cosmic time. The study is motivated by the analytic model of \citet{obreschkow16}, which predicts a relation between the atomic gas fraction fatmf_{\rm atm} and the global atomic stability parameter qjσ/(GM)q \equiv j\sigma / (GM), where MM and jj are the mass and specific angular momentum of the galaxy (stars+cold gas) and σ\sigma is the velocity dispersion of the atomic gas. We show that the simulated galaxies follow this relation from their formation (z4z\simeq4) to present within 0.5\sim 0.5 dex. To explain this behavior, we explore the evolution of the local Toomre stability and find that 90%90\%--100%100\% of the atomic gas in all simulated galaxies is stable at any time. In other words, throughout the entire epoch of peak star formation until today, the timescale for accretion is longer than the timescale to reach equilibrium, thus resulting in a quasi-static equilibrium of atomic gas at any time. Hence, the evolution of fatmf_{\rm atm} depends on the complex hierarchical growth history primarily via the evolution of qq. An exception are galaxies subject to strong environmental effects.Comment: 12 pages, 7 figures; accepted to Ap

    Particle Acceleration in Turbulence and Weakly Stochastic Reconnection

    Get PDF
    Fast particles are accelerated in astrophysical environments by a variety of processes. Acceleration in reconnection sites has attracted the attention of researchers recently. In this letter we analyze the energy distribution evolution of test particles injected in three dimensional (3D) magnetohydrodynamic (MHD) simulations of different magnetic reconnection configurations. When considering a single Sweet-Parker topology, the particles accelerate predominantly through a first-order Fermi process, as predicted in previous work (de Gouveia Dal Pino & Lazarian, 2005) and demonstrated numerically in Kowal, de Gouveia Dal Pino & Lazarian (2011). When turbulence is included within the current sheet, the acceleration rate, which depends on the reconnection rate, is highly enhanced. This is because reconnection in the presence of turbulence becomes fast and independent of resistivity (Lazarian & Vishniac, 1999; Kowal et al., 2009) and allows the formation of a thick volume filled with multiple simultaneously reconnecting magnetic fluxes. Charged particles trapped within this volume suffer several head-on scatterings with the contracting magnetic fluctuations, which significantly increase the acceleration rate and results in a first-order Fermi process. For comparison, we also tested acceleration in MHD turbulence, where particles suffer collisions with approaching and receding magnetic irregularities, resulting in a reduced acceleration rate. We argue that the dominant acceleration mechanism approaches a second order Fermi process in this case.Comment: 6 pages, 1 figur

    Upregulation of the microRNA cluster at the Dlk1-Dio3 locus in lung adenocarcinoma.

    Get PDF
    Mice in which lung epithelial cells can be induced to express an oncogenic Kras(G12D) develop lung adenocarcinomas in a manner analogous to humans. A myriad of genetic changes accompany lung adenocarcinomas, many of which are poorly understood. To get a comprehensive understanding of both the transcriptional and post-transcriptional changes that accompany lung adenocarcinomas, we took an omics approach in profiling both the coding genes and the non-coding small RNAs in an induced mouse model of lung adenocarcinoma. RNAseq transcriptome analysis of Kras(G12D) tumors from F1 hybrid mice revealed features specific to tumor samples. This includes the repression of a network of GTPase-related genes (Prkg1, Gnao1 and Rgs9) in tumor samples and an enrichment of Apobec1-mediated cytosine to uridine RNA editing. Furthermore, analysis of known single-nucleotide polymorphisms revealed not only a change in expression of Cd22 but also that its expression became allele specific in tumors. The most salient finding, however, came from small RNA sequencing of the tumor samples, which revealed that a cluster of ∼53 microRNAs and mRNAs at the Dlk1-Dio3 locus on mouse chromosome 12qF1 was markedly and consistently increased in tumors. Activation of this locus occurred specifically in sorted tumor-originating cancer cells. Interestingly, the 12qF1 RNAs were repressed in cultured Kras(G12D) tumor cells but reactivated when transplanted in vivo. These microRNAs have been implicated in stem cell pleuripotency and proteins targeted by these microRNAs are involved in key pathways in cancer as well as embryogenesis. Taken together, our results strongly imply that these microRNAs represent key targets in unraveling the mechanism of lung oncogenesis

    Scanning a photonic crystal slab nanocavity by condensation of xenon

    Get PDF
    Allowing xenon or nitrogen gas to condense onto a photonic crystal slab nanocavity maintained at 10–20 K results in shifts of the nanocavity mode wavelength by as much as 5 nm (~=4 meV). This occurs in spite of the fact that the mode defect is achieved by omitting three holes to form the spacer. This technique should be useful in changing the detuning between a single quantum dot transition and the nanocavity mode for cavity quantum electrodynamics experiments, such as mapping out a strong coupling anticrossing curve. Compared with temperature scanning, it has a much larger scan range and avoids phonon broadening

    Magnetic Reconnection with Radiative Cooling. I. Optically-Thin Regime

    Full text link
    Magnetic reconnection, a fundamental plasma process associated with a rapid dissipation of magnetic energy, is believed to power many disruptive phenomena in laboratory plasma devices, the Earth magnetosphere, and the solar corona. Traditional reconnection research, geared towards these rather tenuous environments, has justifiably ignored the effects of radiation on the reconnection process. However, in many reconnecting systems in high-energy astrophysics (e.g., accretion-disk coronae, relativistic jets, magnetar flares) and, potentially, in powerful laser plasma and z-pinch experiments, the energy density is so high that radiation, in particular radiative cooling, may start to play an important role. This observation motivates the development of a theory of high-energy-density radiative magnetic reconnection. As a first step towards this goal, we present in this paper a simple Sweet--Parker-like theory of non-relativistic resistive-MHD reconnection with strong radiative cooling. First, we show how, in the absence of a guide magnetic field, intense cooling leads to a strong compression of the plasma in the reconnection layer, resulting in a higher reconnection rate. The compression ratio and the layer temperature are determined by the balance between ohmic heating and radiative cooling. The lower temperature in the radiatively-cooled layer leads to a higher Spitzer resistivity and hence to an extra enhancement of the reconnection rate. We then apply our general theory to several specific astrophysically important radiative processes (bremsstrahlung, cyclotron, and inverse-Compton) in the optically thin regime, for both the zero- and strong-guide-field cases. We derive specific expressions for key reconnection parameters, including the reconnection rate. We also discuss the limitations and conditions for applicability of our theory.Comment: 31 pages, 1 figur

    Collisionless Magnetic Reconnection via Alfven Eigenmodes

    Full text link
    We propose an analytic approach to the problem of collisionless magnetic reconnection formulated as a process of Alfven eigenmodes' generation and dissipation. Alfven eigenmodes are confined by the current sheet in the same way that quantum mechanical waves are confined by the tanh^2 potential. The dynamical time scale of reconnection is the system scale divided by the eigenvalue propagation velocity of the n=1 mode. The prediction of the n=1 mode shows good agreement with the in situ measurement of the reconnection-associated Hall fields

    Bibliography on heavy vehicle dynamics

    Full text link
    http://deepblue.lib.umich.edu/bitstream/2027.42/108243/1/103019.pdfDescription of 103019.pdf : Bibliograph
    corecore