3,329 research outputs found

    Memory effect in triglycine sulfate induced by a transverse electric field: specific heat measurement

    Full text link
    The influence of a transverse electric field in the specific heat of triglycine sulphate (TGS) has been studied. The specific heat of TGS has been measured heating the sample from ferroelectric to paraelectric phase after prolonged transverse electric field (i.e. perpendicular to the ferroelectric axis). It is shown that the specific heat of TGS can remember the temperature TsT_s at which the transverse field was previously applied.Comment: ReVTeX4 Twocolumn 4 pages, 4 figure

    Towards a definition of quantum integrability

    Full text link
    We briefly review the most relevant aspects of complete integrability for classical systems and identify those aspects which should be present in a definition of quantum integrability. We show that a naive extension of classical concepts to the quantum framework would not work because all infinite dimensional Hilbert spaces are unitarily isomorphic and, as a consequence, it would not be easy to define degrees of freedom. We argue that a geometrical formulation of quantum mechanics might provide a way out.Comment: 37 pages, AmsLatex, 1 figur

    The sub-stellar birth rate from UKIDSS

    Get PDF
    We present a new sample of mid-L to mid-T dwarfs with effective temperatures of 11001700 K selected from the UKIDSS Large Area Survey (LAS) and confirmed with infrared spectra from X-shooter/Very Large Telescope. This effective temperature range is especially sensitive to the formation history of Galactic brown dwarfs and allows us to constrain the form of the sub-stellar birth rate, with sensitivity to differentiate between a flat (stellar like) birth rate and an exponentially declining form. We present the discovery of 63 new L and T dwarfs from the UKIDSS LAS DR7, including the identification of 12 likely unresolved binaries, which form the first complete sub-set from our programme, covering 495 square degrees of sky, complete to J = 18.1. We compare our results for this sub-sample with simulations of differing birth rates for objects of masses 0.10-0.03 M-circle dot and ages 1-10 Gyr. We find that the more extreme birth rates (e. g. a halo type form) can likely be excluded as the true form of the birth rate. In addition, we find that although there is substantial scatter we find a preference for a mass function, with a power-law index a in the range -1 <alpha <0 that is consistent (within the errors) with the studies of late T dwarfs.Peer reviewe

    The current population of benchmark brown dwarfs

    Full text link
    The number of brown dwarfs (BDs) now identified tops 700. Yet our understanding of these cool objects is still lacking, and models are struggling to accurately reproduce observations. What is needed is a method of calibrating the models, BDs whose properties (e.g. age, mass, distance, metallicity) that can be independently determined can provide such calibration. The ability to calculate properties based on observables is set to be of vital importance if we are to be able to measure the properties of fainter, more distant populations of BDs that near-future surveys will reveal, for which ground based spectroscopic studies will become increasingly difficult. We present here the state of the current population of age benchmark brown dwarfs.Comment: 2 pages, 1 figure, to appear in the conference proceedings "New Technologies for Probing the Diversity of Brown Dwarfs and Exoplanets", Shanghai, 19-24 July, 200

    A particle swarm optimization based memetic algorithm for dynamic optimization problems

    Get PDF
    Copyright @ Springer Science + Business Media B.V. 2010.Recently, there has been an increasing concern from the evolutionary computation community on dynamic optimization problems since many real-world optimization problems are dynamic. This paper investigates a particle swarm optimization (PSO) based memetic algorithm that hybridizes PSO with a local search technique for dynamic optimization problems. Within the framework of the proposed algorithm, a local version of PSO with a ring-shape topology structure is used as the global search operator and a fuzzy cognition local search method is proposed as the local search technique. In addition, a self-organized random immigrants scheme is extended into our proposed algorithm in order to further enhance its exploration capacity for new peaks in the search space. Experimental study over the moving peaks benchmark problem shows that the proposed PSO-based memetic algorithm is robust and adaptable in dynamic environments.This work was supported by the National Nature Science Foundation of China (NSFC) under Grant No. 70431003 and Grant No. 70671020, the National Innovation Research Community Science Foundation of China under Grant No. 60521003, the National Support Plan of China under Grant No. 2006BAH02A09 and the Ministry of Education, science, and Technology in Korea through the Second-Phase of Brain Korea 21 Project in 2009, the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/01 and the Hong Kong Polytechnic University Research Grants under Grant G-YH60

    Small hydropower plants as a threat to the endangered pearl mussel Margaritifera margaritifera

    Get PDF
    Freshwater mussels are undergoing rapid global declines due to habitat loss and fragmentation, among other factors, but little is known about the effects of small hydropower plants. Here we assessed the impact of small hydropower plants on the abundance and size structure of the imperilled pearl mussel Margaritifera margaritifera. For this, we sampled 66 sites in three Portuguese rivers (Mente, Rabaçal and Tuela) located upstream and downstream of dams and within the reservoirs. Pearl mussels were significantly more abundant upstream than downstream of dams (97.4% more) or within reservoirs (98.5% more). In addition, juveniles were mostly found upstream of dams. The most significant environmental alterations that explained the observed patterns were related to changes in sediment characteristics (accumulation of fine sediments and organic matter in reservoirs) and water chemistry, most notably suspended solids (highest values in reservoirs) and dissolved oxygen (lowest values in reservoirs). Overall, results show that small hydropower plants can deeply affect pearl mussel populations: specimens almost disappeared from the areas within the reservoirs and sites located downstream only retained adults without signs of recent recruitment. Future management measures devoted to the conservation of pearl mussels should take into account the results reported here to avoid the construction of new dams in pearl mussel rivers; improve management of the river flow in downstream areas; and consider the decommissioning of dams in pearl mussel rivers with a particular attention devoted to the re-naturalization of river sections under the influence of the reservoir and downstream areas.This work was supported by: i) POSEUR-03-2215-FC-000096 and ICNF funds under project CP01-MARG-QUERCUS/2018; ii) Project Reviving Douro Basin funded by MAVA, Fondation pour la Nature and iii) European Investment Funds by FEDER/COMPETE/POCI – Operational Competitiveness and Internationalization Program, under Project POCI-01-0145-FEDER-006958 and National Funds by FCT - Portuguese Foundation for Science and Technology, under the projects UID/AGR/04033/2013 and UID/AGR/00690/2019. FCT also support MLL with a doctoral grant (SFRH/BD/115728/2016)

    A memetic algorithm with adaptive hill climbing strategy for dynamic optimization problems

    Get PDF
    Copyright @ Springer-Verlag 2008Dynamic optimization problems challenge traditional evolutionary algorithms seriously since they, once converged, cannot adapt quickly to environmental changes. This paper investigates the application of memetic algorithms, a class of hybrid evolutionary algorithms, for dynamic optimization problems. An adaptive hill climbing method is proposed as the local search technique in the framework of memetic algorithms, which combines the features of greedy crossover-based hill climbing and steepest mutation-based hill climbing. In order to address the convergence problem, two diversity maintaining methods, called adaptive dual mapping and triggered random immigrants, respectively, are also introduced into the proposed memetic algorithm for dynamic optimization problems. Based on a series of dynamic problems generated from several stationary benchmark problems, experiments are carried out to investigate the performance of the proposed memetic algorithm in comparison with some peer evolutionary algorithms. The experimental results show the efficiency of the proposed memetic algorithm in dynamic environments.This work was supported by the National Nature Science Foundation of China (NSFC) under Grant Nos. 70431003 and 70671020, the National Innovation Research Community Science Foundation of China under Grant No. 60521003, and the National Support Plan of China under Grant No. 2006BAH02A09 and the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/01

    The Relativistic Factor in the Orbital Dynamics of Point Masses

    Full text link
    There is a growing population of relativistically relevant minor bodies in the Solar System and a growing population of massive extrasolar planets with orbits very close to the central star where relativistic effects should have some signature. Our purpose is to review how general relativity affects the orbital dynamics of the planetary systems and to define a suitable relativistic correction for Solar System orbital studies when only point masses are considered. Using relativistic formulae for the N body problem suited for a planetary system given in the literature we present a series of numerical orbital integrations designed to test the relevance of the effects due to the general theory of relativity in the case of our Solar System. Comparison between different algorithms for accounting for the relativistic corrections are performed. Relativistic effects generated by the Sun or by the central star are the most relevant ones and produce evident modifications in the secular dynamics of the inner Solar System. The Kozai mechanism, for example, is modified due to the relativistic effects on the argument of the perihelion. Relativistic effects generated by planets instead are of very low relevance but detectable in numerical simulations
    corecore