8,933 research outputs found
Hybrid modeling of relativistic underdense plasma photocathode injectors
The dynamics of laser ionization-based electron injection in the recently introduced plasma photocathode concept is analyzed analytically and with particle-in-cell simulations. The influence of the initial few-cycle laser pulse that liberates electrons through background gas ionization in a plasma wakefield accelerator on the final electron phase space is described through the use of Ammosov-Deloine-Krainov theory as well as nonadiabatic Yudin-Ivanov (YI) ionization theory and subsequent downstream dynamics in the combined laser and plasma wave fields. The photoelectrons are tracked by solving their relativistic equations of motion. They experience the analytically described transient laser field and the simulation-derived plasma wakefields. It is shown that the minimum normalized emittance of fs-scale electron bunches released in mulit-GV/m-scale plasma wakefields is of the order of 10-2 mm mrad. Such unprecedented values, combined with the dramatically increased controllability of electron bunch production, pave the way for highly compact yet ultrahigh quality plasma-based electron accelerators and light source applications
Global digital data sets of soil type, soil texture, surface slope and other properties: Documentation of archived data tape
The file structure and coding of four soils data sets derived from the Zobler (1986) world soil file is described. The data were digitized on a one-degree square grid. They are suitable for large-area studies such as climate research with general circulation models, as well as in forestry, agriculture, soils, and hydrology. The first file is a data set of codes for soil unit, land-ice, or water, for all the one-degree square cells on Earth. The second file is a data set of codes for texture, land-ice, or water, for the same soil units. The third file is a data set of codes for slope, land-ice, or water for the same units. The fourth file is the SOILWRLD data set, containing information on soil properties of land cells of both Matthews' and Food and Agriculture Organization (FAO) sources. The fourth file reconciles land-classification differences between the two and has missing data filled in
Design considerations for the use of laser-plasma accelerators for advanced space radiation studies
We present design considerations for the use of laser-plasma accelerators for mimicking space radiation and testing space-grade electronics. This novel application takes advantage of the inherent ability of laser-plasma accelerators to produce particle beams with exponential energy distribution, which is a characteristic shared with the hazardous relativistic electron flux present in the radiation belts of planets such as Earth, Saturn and Jupiter. Fundamental issues regarding laser-plasma interaction parameters, beam propagation, flux development, and experimental setup are discussed
Ultracold electron bunch generation via plasma photocathode emission and acceleration in a beam-driven plasma blowout
Beam-driven plasma wakefield acceleration using low-ionization-threshold gas such as Li is combined with laser-controlled electron injection via ionization of high-ionization-threshold gas such as He. The He electrons are released with low transverse momentum in the focus of the copropagating, nonrelativistic-intensity laser pulse directly inside the accelerating or focusing phase of the Li blowout. This concept paves the way for the generation of sub-μm-size, ultralow-emittance, highly tunable electron bunches, thus enabling a flexible new class of an advanced free electron laser capable high-field accelerator. © 2012 American Physical Society
Recommended from our members
Slab symmetric dielectric micron scale structures for high gradient electron acceleration
A class of planar microstructure is proposed which provide high accelerating gradients when excited by an infrared laser pulse. These structures consist of parallel dielectric slabs separated by a vacuum gap; the dielectric or the outer surface coating are spatially modulated at the laser wavelength along the beam direction so as to support a standing wave accelerating field. We have developed numerical and analytic models of the accelerating mode fields in the structure. We show an optimized coupling scheme such that this mode is excited resonantly with a large quality factor. The status of planned experiments on fabricating and measuring these planar structures will be described
Second Stage String Fragmentation Model
A string model, advocated by Bowler, provides a physical and intuitive
picture of heavy quark fragmentation. When supplemented by an ad hoc factor of
(1-z), to suppress fragmentation near z=1, it supplies an excellent fit to the
data. We extend Bowler's model by accounting for the further decay of the
massive mesonic states produced by the initial string breaking. We find that
each subsequent string break and cascade decay beyond the first, introduces a
factor of (1-z). Furthermore we find that including a finite mass for the
quarks, which pop out of the vacuum and split the string, forces the first
string breaking to produce massive states requiring further decay. This
sequence terminates at the second stage of fragmentation where only relatively
"light" heavy meson systems are formed. Thus we naturally account for the
phenomenologically required factor of (1-z). We also predict that the ratio of
(primary) fragments-vector/(vector plus scalar) should be .61. Our second stage
string fragmentation model provides an appealing picture of heavy quark
fragmentation.Comment: 15 page
Numerical Study of the Lowest Energy Configurations for Global String-Antistring Pairs
We investigate the lowest energy configurations for string - antistring pairs
at fixed separations by numerically minimizing the energy. We show that for
separations smaller than a critical value, a region of false vacuum develops in
the middle due to large gradient energy density. Consequently, well defined
string - antistring pairs do not exist for such separations. We present an
example of vortex - antivortex production by vacuum bubbles where this effect
seems to play a dynamical role in the annihilation of the pair. We also study
the dependence of the energy of an string-antistring pair on their separation
and find deviations from a simple logarithmic dependence for small separations.Comment: 14 pages, in LATEX, 7 figures (not included
Topological String Defect Formation During the Chiral Phase Transition
We extend and generalize the seminal work of Brandenberger, Huang and Zhang
on the formation of strings during chiral phase transitions(berger) and discuss
the formation of abelian and non-abelian topological strings during such
transitions in the early Universe and in the high energy heavy-ion collisions.
Chiral symmetry as well as deconfinement are restored in the core of these
defects. Formation of a dense network of string defects is likely to play an
important role in the dynamics following the chiral phase transition. We
speculate that such a network can give rise to non-azimuthal distribution of
transverse energy in heavy-ion collisions.Comment: 10 pages, 4 figures, minor correction
Horizontal cooling towers: riverine ecosystem services and the fate of thermoelectric heat in the contemporary Northeast US
The electricity sector is dependent on rivers to provide ecosystem services that help regulate excess heat, either through provision of water for evaporative cooling or by conveying, diluting and attenuating waste heat inputs. Reliance on these ecosystem services alters flow and temperature regimes, which impact fish habitat and other aquatic ecosystem services. We demonstrate the contemporary (2000–2010) dependence of the electricity sector on riverine ecosystem services and associated aquatic impacts in the Northeast US, a region with a high density of thermoelectric power plants. We quantify these dynamics using a spatially distributed hydrology and water temperature model (the framework for aquatic modeling in the Earth system), coupled with the thermoelectric power and thermal pollution model. We find that 28.4% of thermoelectric heat production is transferred to rivers, whereas 25.9% is directed to vertical cooling towers. Regionally, only 11.3% of heat transferred to rivers is dissipated to the atmosphere and the rest is delivered to coasts, in part due to the distribution of power plants within the river system. Impacts to the flow regime are minimal, while impacts to the thermal regime include increased river lengths of unsuitable habitats for fish with maximum thermal tolerances of 24.0, 29.0, and 34.0 ° C in segments downstream of plants by 0.6%, 9.8%, and 53.9%, respectively. Our analysis highlights the interactions among electricity production, cooling technologies, aquatic impacts, and ecosystem services, and can be used to assess the full costs and tradeoffs of electricity production at regional scales
- …
