5,161 research outputs found

    High sensitivity measurement of 224Ra and 226Ra in water with an improved hydrous titanium oxide technique at the Sudbury Neutrino Observatory

    Full text link
    The existing hydrous titanium oxide (HTiO) technique for the measurement of 224Ra and 226Ra in the water at the Sudbury Neutrino Observatory (SNO) has been changed to make it faster and less sensitive to trace impurities in the HTiO eluate. Using HTiO-loaded filters followed by cation exchange adsorption and HTiO co-precipitation, Ra isotopes from 200-450 tonnes of heavy water can be extracted and concentrated into a single sample of a few millilitres with a total chemical efficiency of 50%. Combined with beta-alpha coincidence counting, this method is capable of measuring 2.0x10^3 uBq/kg of 224Ra and 3.7x10^3 uBq/kg of 226Ra from the 232Th and 238U decay chains, respectively, for a 275 tonne D2O assay, which are equivalent to 5x10^16 g Th/g and 3x10^16 g U/g in heavy water.Comment: 8 Pages, 2 figures and 2 table

    Non-human TRIM5 variants enhance recognition of HIV-1-infected cells by CD8+ T cells

    Get PDF
    Tripartite motif-containing protein 5 (TRIM5) restricts human immunodeficiency virus type-1 (HIV-1) in a species-specific manner by uncoating viral particles while activating early innate responses. Although the contribution of TRIM5 proteins to cellular immunity has not yet been studied, their interactions with the incoming viral capsid and the cellular proteasome led us to hypothesize a role for them. Here, we investigate whether the expression of two non-human TRIM5 orthologs, rhesus TRIM5α (RhT5) and TRIM-cyclophilin A (TCyp), both of which are potent restrictors of HIV-1, could enhance immune recognition of infected cells by CD8+ T cells. We illustrate how TRIM5 restriction improves CD8+ T cell-mediated HIV-1 inhibition. Moreover, when TRIM5 activity was blocked by the non-immunosuppressive analog of cyclosporin A, SmBz-CsA, we found a significant reduction in CD107a/MIP1β expression in HIV-1-specific CD8+ T cells. This finding underscores the direct link between TRIM5 restriction and activation of CD8+ T-cell responses. Interestingly, cells expressing RhT5 induced stronger CD8+ T-cell responses through the specific recognition of the HIV-1 capsid by the immune system. The underlying mechanism of this process may involve TRIM5-specific capsid recruitment to cellular proteasomes and increase peptide availability for loading and presentation of HLA class I antigens. In summary, we identified a novel function for non-human TRIM5 variants in cellular immunity. We hypothesise that TRIM5 can couple innate viral sensing and CD8+ T-cell activation to increase species barriers against retrovirus infection. IMPORTANCE: New therapeutics to tackle HIV-1 infection should aim to combine rapid innate viral sensing and cellular immune recognition. Such strategies could prevent seeding of the viral reservoir and the immune damage that occurs during acute infection. The non-human TRIM5 variants, rhesus TRIM5α (RhT5) and TRIM-cyclophilin A (TCyp), are attractive candidates owing to their potency in sensing HIV-1 and blocking its activity. Here, we show that expression of RhT5 and TCyp in HIV-1-infected cells improves CD8+ T cell-mediated inhibition through the direct activation of HIV-1-specific CD8+ T-cell responses. We found that the potency in CD8+ activation was stronger for RhT5 variants and capsid-specific CD8+ T-cells in a mechanism that relies on TRIM5-dependent particle recruitment to cellular proteasomes. This novel mechanism couples innate viral sensing with cellular immunity in a single protein and could be exploited to develop innovative therapeutics for control of HIV-1 infection

    A simple genetic algorithm for calibration of stochastic rock discontinuity networks

    Get PDF
    Este artículo propone un método para llevar a cabo la calibración de las familias de discontinuidades en macizos rocosos. We present a novel approach for calibration of stochastic discontinuity network parameters based on genetic algorithms (GAs). To validate the approach, examples of application of the method to cases with known parameters of the original Poisson discontinuity network are presented. Parameters of the model are encoded as chromosomes using a binary representation, and such chromosomes evolve as successive generations of a randomly generated initial population, subjected to GA operations of selection, crossover and mutation. Such back-calculated parameters are employed to make assessments about the inference capabilities of the model using different objective functions with different probabilities of crossover and mutation. Results show that the predictive capabilities of GAs significantly depend on the type of objective function considered; and they also show that the calibration capabilities of the genetic algorithm can be acceptable for practical engineering applications, since in most cases they can be expected to provide parameter estimates with relatively small errors for those parameters of the network (such as intensity and mean size of discontinuities) that have the strongest influence on many engineering applications

    Synthesis Of Ag@silica Nanoparticles By Assisted Laser Ablation.

    Get PDF
    This paper reports the synthesis of silver nanoparticles coated with porous silica (Ag@Silica NPs) using an assisted laser ablation method. This method is a chemical synthesis where one of the reagents (the reducer agent) is introduced in nanometer form by laser ablation of a solid target submerged in an aqueous solution. In a first step, a silicon wafer immersed in water solution was laser ablated for several minutes. Subsequently, an AgNO3 aliquot was added to the aqueous solution. The redox reaction between the silver ions and ablation products leads to a colloidal suspension of core-shell Ag@Silica NPs. The influence of the laser pulse energy, laser wavelength, ablation time, and Ag(+) concentration on the size and optical properties of the Ag@Silica NPs was investigated. Furthermore, the colloidal suspensions were studied by UV-VIS-NIR spectroscopy, X-Ray diffraction, and high-resolution transmission electron microscopy (HRTEM).1039

    BDNF and NGF Signalling in Early Phases of Psychosis: Relationship with Inflammation and Response to Antipsychotics after 1 Year

    Get PDF
    Previous studies have indicated systemic deregulation of the proinflammatory or anti-inflammatory balance in individuals with first-episode psychosis (FEP) that persists 12 months later. To identify potential risk/protective factors and associations with symptom severity, we assessed possible changes in plasma levels of neurotrophins (brain-derived neurotrophic factor BDNF] and nerve growth factor NGF]) and their receptors in peripheral blood mononuclear cells (PBMCs). Expression of the 2 forms of BDNF receptors (active TrkB-FL and inactiveTrkB-T1) in PBMCs of FEP patients changed over time, TrkB-FL expression increasing by 1 year after diagnosis, while TrkB-T1 expression decreased. The TrkB-FL/TrkB-T1 ratio (hereafter FL/T1 ratio) increased during follow-up in the nonaffective psychosis group only, suggesting different underlying pathophysiological mechanisms in subgroups of FEP patients. Further, the expression of the main NGF receptor, TrkA, generally increased in patients at follow-up. After adjusting for potential confounders, baseline levels of inducible isoforms of nitric oxide synthase, cyclooxygenase, and nuclear transcription factor were significantly associated with the FL/T1 ratio, suggesting that more inflammation is associated with higher values of this ratio. Interestingly, the FL/T1 ratio might have a role as a predictor of functioning, a regression model of functioning at 1 year suggesting that the effect of the FL/T1 ratio at baseline on functioning at 1 year depended on whether patients were treated with antipsychotics. These findings may have translational relevance; specifically, it might be useful to assess the expression of TrkB receptor isoforms before initiating antipsychotic treatment in FEPs

    BDNF and NGF signalling in early phases of psychosis: relationship with inflammation and response to antipsychotics after a 1 year

    Get PDF
    Previous studies have indicated systemic deregulation of the proinflammatory or anti-inflammatory balance in individuals with first-episode psychosis (FEP) that persists 12 months later. To identify potential risk/protective factors and associations with symptom severity, we assessed possible changes in plasma levels of neurotrophins (brain-derived neurotrophic factor [BDNF] and nerve growth factor [NGF]) and their receptors in peripheral blood mononuclear cells (PBMCs). Expression of the 2 forms of BDNF receptors (active TrkB-FL and inactiveTrkB-T1) in PBMCs of FEP patients changed over time, TrkB-FL expression increasing by 1 year after diagnosis, while TrkB-T1 expression decreased. The TrkB-FL/TrkB-T1 ratio (hereafter FL/T1 ratio) increased during follow-up in the nonaffective psychosis group only, suggesting different underlying pathophysiological mechanisms in subgroups of FEP patients. Further, the expression of the main NGF receptor, TrkA, generally increased in patients at follow-up. After adjusting for potential confounders, baseline levels of inducible isoforms of nitric oxide synthase, cyclooxygenase, and nuclear transcription factor were significantly associated with the FL/T1 ratio, suggesting that more inflammation is associated with higher values of this ratio. Interestingly, the FL/T1 ratio might have a role as a predictor of functioning, a regression model of functioning at 1 year suggesting that the effect of the FL/T1 ratio at baseline on functioning at 1 year depended on whether patients were treated with antipsychotics. These findings may have translational relevance; specifically, it might be useful to assess the expression of TrkB receptor isoforms before initiating antipsychotic treatment in FEP
    • …
    corecore