3,129 research outputs found
Unconventional magnetism in all-carbon nanofoam
We report production of nanostructured carbon foam by a high-repetition-rate,
high-power laser ablation of glassy carbon in Ar atmosphere. A combination of
characterization techniques revealed that the system contains both sp2 and sp3
bonded carbon atoms. The material is a novel form of carbon in which
graphite-like sheets fill space at very low density due to strong hyperbolic
curvature, as proposed for ?schwarzite?. The foam exhibits ferromagnetic-like
behaviour up to 90 K, with a narrow hysteresis curve and a high saturation
magnetization. Such magnetic properties are very unusual for a carbon
allotrope. Detailed analysis excludes impurities as the origin of the magnetic
signal. We postulate that localized unpaired spins occur because of topological
and bonding defects associated with the sheet curvature, and that these spins
are stabilized due to the steric protection offered by the convoluted sheets.Comment: 14 pages, including 2 tables and 7 figs. Submitted to Phys Rev B 10
September 200
A cross-cultural examination of the relationships among human resource management practices and organisational commitment: an institutional collectivism perspective
Previous research has shown that human resource management (HRM) practices vary across cultures. However, little research has empirically compared the effects of various HRM practices on firm-level or individual-level outcome variables across cultures. Drawing upon psychological contract theory and the literature on cultural values, the present study examined the effects of three organisational-level HRM practices on individual organisational commitment in a survey of 2424 individuals in 120 organisations located in four countries and three industries. Based upon the GLOBE study, we classified the four countries into two groups – high versus low institutional collectivism. The results of our hierarchical linear modelling (HLM) analyses found significant differences in the effects of organisational-level HRM on individual organisational commitment across cultures for two of the three HRM practices included in our model: training and teamwork. We also found partial support for differences across cultures for the effects of the third HRM practice: employee involvement in decision making. Overall, our results support the utility of theoretical and empirical models that address multiple levels of analyses to better understand the mechanisms through which the HRM-performance link takes place across national cultures
Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics
The mechanism of ablation of solids by intense femtosecond laser pulses is
described in an explicit analytical form. It is shown that at high intensities
when the ionization of the target material is complete before the end of the
pulse, the ablation mechanism is the same for both metals and dielectrics. The
physics of this new ablation regime involves ion acceleration in the
electrostatic field caused by charge separation created by energetic electrons
escaping from the target. The formulae for ablation thresholds and ablation
rates for metals and dielectrics, combining the laser and target parameters,
are derived and compared to experimental data. The calculated dependence of the
ablation thresholds on the pulse duration is in agreement with the experimental
data in a femtosecond range, and it is linked to the dependence for nanosecond
pulses.Comment: 27 pages incl.3 figs; presented at CLEO-Europe'2000 11-15 Sept.2000;
papers QMD6 and CTuK11
Application of two phosphorus models with different complexities in a mesoscale river catchment
The water balance and phosphorus inputs of surface waters of the Weiße Elster catchment, Germany, have been quantified using the models GROWA/MEPhos and SWAT. A comparison of the model results shows small differences in the mean long-term total runoff for the entire study area. All relevant pathways of phosphorus transport were considered in MEPhos with phosphorus inputs resulting to about 65% from point sources. SWAT focuses on agricultural areas and estimates a phosphorus input of about 60% through erosion. The mean annual phosphorus input from erosion calculated with SWAT is six times higher than the estimation with MEPhos due to the differing model concepts. This shows the uncertainty contributed by the modelling description of phosphorus pathways
Structure, site-specific magnetism and magneto-transport properties of epitaxial D0 MnFeGa thin films
Ferrimagnetic MnFeGa thin films have been
characterised by X-ray diffraction, SQUID magnetometry, X-ray absorption
spectroscopy, X-ray magnetic circular dichroism and M\"{o}ssbauer spectroscopy
with the aim of determining the structure and site-specific magnetism of this
tetragonal, D0-structure Heusler compound. High-quality epitaxial films
with low RMS surface roughness ( nm) are grown by magnetron
co-sputtering. The tetragonal distortion induces strong perpendicular magnetic
anisotropy along the -axis with a typical coercive field T
and an anisotropy field ranging from to T. Upon increasing the Fe
content , substantial uniaxial anisotropy, MJ/m
can be maintained over the full range, while the magnetisation of the
compound is reduced from to kA/m. The total magnetisation is almost
entirely given by the sum of the spin moments originating from the
ferrimagnetic Mn and Fe sublattices, with the latter being coupled
ferromagnetically to one of the former. The orbital magnetic moments are
practically quenched, and have negligible contributions to the magnetisation.
The films with exhibit a high anomalous Hall angle of % and a
high Fermi-level spin polarisation, above %, as measured by point contact
Andreev reflection. The Fe-substituted MnGa films are highly tunable with a
unique combination of high anisotropy, low magnetisation, appreciable spin
polarisation and low surface roughness, making them very strong candidates for
thermally-stable spin-transfer-torque switching nanomagnets with lateral
dimensions down to nm.Comment: 11 pages, 11 figure
Magnetization and Anisotropy of Cobalt Ferrite Thin Films
The magnetization of thin films of cobalt ferrite frequently falls far below
the bulk value of 455 kAm-1, which corresponds to an inverse cation
distribution in the spinel structure with a significant orbital moment of about
0.6 muB that is associated with the octahedrally-coordinated Co2+ ions. The
orbital moment is responsible for the magnetostriction and magnetocrystalline
anisotropy, and its sensitivity to imposed strain. We have systematically
investigated the structure and magnetism of films produced by pulsed-laser
deposition on different substrates (TiO2, MgO, MgAl2O4, SrTiO3, LSAT, LaAlO3)
and as a function of temperature (500-700 C) and oxygen pressure (10-4 - 10
Pa). Magnetization at room-temperature ranges from 60 to 440 kAm-1, and
uniaxial substrate-induced anisotropy ranges from +220 kJm-3 for films on
deposited on MgO (100) to -2100 kJm-3 for films deposited on MgAl2O4 (100),
where the room-temperature anisotropy field reaches 14 T. No rearrangement of
high-spin Fe3+ and Co2+ cations on tetrahedral and octahedral sites can reduce
the magnetization below the bulk value, but a switch from Fe3+ and Co2+ to Fe2+
and low-spin Co3+ on octahedral sites will reduce the low-temperature
magnetization to 120 kAm-1, and a consequent reduction of Curie temperature can
bring the room-temperature value to near zero. Possible reasons for the
appearance of low-spin cobalt in the thin films are discussed.
Keywords; Cobalt ferrite, thin films, pulsed-laser deposition, low-spin Co3+,
strain engineering of magnetization
- …
