3,129 research outputs found

    Unconventional magnetism in all-carbon nanofoam

    Get PDF
    We report production of nanostructured carbon foam by a high-repetition-rate, high-power laser ablation of glassy carbon in Ar atmosphere. A combination of characterization techniques revealed that the system contains both sp2 and sp3 bonded carbon atoms. The material is a novel form of carbon in which graphite-like sheets fill space at very low density due to strong hyperbolic curvature, as proposed for ?schwarzite?. The foam exhibits ferromagnetic-like behaviour up to 90 K, with a narrow hysteresis curve and a high saturation magnetization. Such magnetic properties are very unusual for a carbon allotrope. Detailed analysis excludes impurities as the origin of the magnetic signal. We postulate that localized unpaired spins occur because of topological and bonding defects associated with the sheet curvature, and that these spins are stabilized due to the steric protection offered by the convoluted sheets.Comment: 14 pages, including 2 tables and 7 figs. Submitted to Phys Rev B 10 September 200

    A cross-cultural examination of the relationships among human resource management practices and organisational commitment: an institutional collectivism perspective

    Get PDF
    Previous research has shown that human resource management (HRM) practices vary across cultures. However, little research has empirically compared the effects of various HRM practices on firm-level or individual-level outcome variables across cultures. Drawing upon psychological contract theory and the literature on cultural values, the present study examined the effects of three organisational-level HRM practices on individual organisational commitment in a survey of 2424 individuals in 120 organisations located in four countries and three industries. Based upon the GLOBE study, we classified the four countries into two groups – high versus low institutional collectivism. The results of our hierarchical linear modelling (HLM) analyses found significant differences in the effects of organisational-level HRM on individual organisational commitment across cultures for two of the three HRM practices included in our model: training and teamwork. We also found partial support for differences across cultures for the effects of the third HRM practice: employee involvement in decision making. Overall, our results support the utility of theoretical and empirical models that address multiple levels of analyses to better understand the mechanisms through which the HRM-performance link takes place across national cultures

    Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics

    Full text link
    The mechanism of ablation of solids by intense femtosecond laser pulses is described in an explicit analytical form. It is shown that at high intensities when the ionization of the target material is complete before the end of the pulse, the ablation mechanism is the same for both metals and dielectrics. The physics of this new ablation regime involves ion acceleration in the electrostatic field caused by charge separation created by energetic electrons escaping from the target. The formulae for ablation thresholds and ablation rates for metals and dielectrics, combining the laser and target parameters, are derived and compared to experimental data. The calculated dependence of the ablation thresholds on the pulse duration is in agreement with the experimental data in a femtosecond range, and it is linked to the dependence for nanosecond pulses.Comment: 27 pages incl.3 figs; presented at CLEO-Europe'2000 11-15 Sept.2000; papers QMD6 and CTuK11

    Application of two phosphorus models with different complexities in a mesoscale river catchment

    Get PDF
    The water balance and phosphorus inputs of surface waters of the Weiße Elster catchment, Germany, have been quantified using the models GROWA/MEPhos and SWAT. A comparison of the model results shows small differences in the mean long-term total runoff for the entire study area. All relevant pathways of phosphorus transport were considered in MEPhos with phosphorus inputs resulting to about 65% from point sources. SWAT focuses on agricultural areas and estimates a phosphorus input of about 60% through erosion. The mean annual phosphorus input from erosion calculated with SWAT is six times higher than the estimation with MEPhos due to the differing model concepts. This shows the uncertainty contributed by the modelling description of phosphorus pathways

    Structure, site-specific magnetism and magneto-transport properties of epitaxial D022_{22} Mn2_2Fex_xGa thin films

    Full text link
    Ferrimagnetic Mn2_2Fex_xGa (0.26x1.12)(0.26 \leq x \leq 1.12) thin films have been characterised by X-ray diffraction, SQUID magnetometry, X-ray absorption spectroscopy, X-ray magnetic circular dichroism and M\"{o}ssbauer spectroscopy with the aim of determining the structure and site-specific magnetism of this tetragonal, D022_{22}-structure Heusler compound. High-quality epitaxial films with low RMS surface roughness (0.6\sim 0.6 nm) are grown by magnetron co-sputtering. The tetragonal distortion induces strong perpendicular magnetic anisotropy along the cc-axis with a typical coercive field μ0H0.8\mu_0 H\sim 0.8 T and an anisotropy field ranging from 66 to 88 T. Upon increasing the Fe content xx, substantial uniaxial anisotropy, Ku1.0K_\mathrm{u} \geq 1.0 MJ/m3^3 can be maintained over the full xx range, while the magnetisation of the compound is reduced from 400400 to 280280 kA/m. The total magnetisation is almost entirely given by the sum of the spin moments originating from the ferrimagnetic Mn and Fe sublattices, with the latter being coupled ferromagnetically to one of the former. The orbital magnetic moments are practically quenched, and have negligible contributions to the magnetisation. The films with x=0.73x=0.73 exhibit a high anomalous Hall angle of 2.52.5 % and a high Fermi-level spin polarisation, above 5151 %, as measured by point contact Andreev reflection. The Fe-substituted Mn2_2Ga films are highly tunable with a unique combination of high anisotropy, low magnetisation, appreciable spin polarisation and low surface roughness, making them very strong candidates for thermally-stable spin-transfer-torque switching nanomagnets with lateral dimensions down to 1010 nm.Comment: 11 pages, 11 figure

    Magnetization and Anisotropy of Cobalt Ferrite Thin Films

    Full text link
    The magnetization of thin films of cobalt ferrite frequently falls far below the bulk value of 455 kAm-1, which corresponds to an inverse cation distribution in the spinel structure with a significant orbital moment of about 0.6 muB that is associated with the octahedrally-coordinated Co2+ ions. The orbital moment is responsible for the magnetostriction and magnetocrystalline anisotropy, and its sensitivity to imposed strain. We have systematically investigated the structure and magnetism of films produced by pulsed-laser deposition on different substrates (TiO2, MgO, MgAl2O4, SrTiO3, LSAT, LaAlO3) and as a function of temperature (500-700 C) and oxygen pressure (10-4 - 10 Pa). Magnetization at room-temperature ranges from 60 to 440 kAm-1, and uniaxial substrate-induced anisotropy ranges from +220 kJm-3 for films on deposited on MgO (100) to -2100 kJm-3 for films deposited on MgAl2O4 (100), where the room-temperature anisotropy field reaches 14 T. No rearrangement of high-spin Fe3+ and Co2+ cations on tetrahedral and octahedral sites can reduce the magnetization below the bulk value, but a switch from Fe3+ and Co2+ to Fe2+ and low-spin Co3+ on octahedral sites will reduce the low-temperature magnetization to 120 kAm-1, and a consequent reduction of Curie temperature can bring the room-temperature value to near zero. Possible reasons for the appearance of low-spin cobalt in the thin films are discussed. Keywords; Cobalt ferrite, thin films, pulsed-laser deposition, low-spin Co3+, strain engineering of magnetization
    corecore