574 research outputs found
Sum Rates, Rate Allocation, and User Scheduling for Multi-User MIMO Vector Perturbation Precoding
This paper considers the multiuser multiple-input multiple-output (MIMO)
broadcast channel. We consider the case where the multiple transmit antennas
are used to deliver independent data streams to multiple users via vector
perturbation. We derive expressions for the sum rate in terms of the average
energy of the precoded vector, and use this to derive a high signal-to-noise
ratio (SNR) closed-form upper bound, which we show to be tight via simulation.
We also propose a modification to vector perturbation where different rates can
be allocated to different users. We conclude that for vector perturbation
precoding most of the sum rate gains can be achieved by reducing the rate
allocation problem to the user selection problem. We then propose a
low-complexity user selection algorithm that attempts to maximize the high-SNR
sum rate upper bound. Simulations show that the algorithm outperforms other
user selection algorithms of similar complexity.Comment: 27 pages with 6 figures and 2 tables. Accepted for publication in
IEEE Trans. Wireless Comm
Secrecy Sum-Rates for Multi-User MIMO Regularized Channel Inversion Precoding
In this paper, we propose a linear precoder for the downlink of a multi-user
MIMO system with multiple users that potentially act as eavesdroppers. The
proposed precoder is based on regularized channel inversion (RCI) with a
regularization parameter and power allocation vector chosen in such a
way that the achievable secrecy sum-rate is maximized. We consider the
worst-case scenario for the multi-user MIMO system, where the transmitter
assumes users cooperate to eavesdrop on other users. We derive the achievable
secrecy sum-rate and obtain the closed-form expression for the optimal
regularization parameter of the precoder using
large-system analysis. We show that the RCI precoder with
outperforms several other linear precoding schemes, and
it achieves a secrecy sum-rate that has same scaling factor as the sum-rate
achieved by the optimum RCI precoder without secrecy requirements. We propose a
power allocation algorithm to maximize the secrecy sum-rate for fixed .
We then extend our algorithm to maximize the secrecy sum-rate by jointly
optimizing and the power allocation vector. The jointly optimized
precoder outperforms RCI with and equal power allocation
by up to 20 percent at practical values of the signal-to-noise ratio and for 4
users and 4 transmit antennas.Comment: IEEE Transactions on Communications, accepted for publicatio
Endogenous Singlet Oxygen Photosensitizers in Plants.
Singlet oxygen, a highly reactive oxygen species, is inherently produced in chloroplasts of plants. Chlorophylls are used by plants to harvest light and to transport the singlet electronic excitation from the antenna complexes to the reaction centre (RC) of photosystem I (PSI) and PSII. However, chlorophylls are also efficient photosensitizers of singlet oxygen when they are isolated, when the excitation energy flow is impaired in the antenna complexes, or when the electron transport in PSII is inhibited. In the last case, chlorophyll triplets are formed, and transfer their electronic excitation to molecular oxygen. That chlorophylls act as donors of singlet excitation to other chlorophylls or as donors of triplet excitation to carotenoids as well as molecular oxygen makes singlet oxygen a constant threat for plants. However, plants have developed protection mechanisms for dealing with the danger. Several molecular processes work together in chloroplasts to cope with photosensitization of singlet oxygen and to minimize the resulting damage. Protection utilizes two strategies: to forestall the formation of singlet oxygen (either by preventing the formation of the would-be sensitizer or through deactivating it by a quencher other than molecular oxygen), and to quench, by physical or chemical means, any singlet oxygen that does get formed. Among the photosynthetic complexes, PSII is unique in that its primary electron donor is unprotected by carotenoids and singlet oxygen oxidizes the pigments of PSII RC; intriguingly the carotenoid oxidation products are signalling molecules that can reprogram gene expression. Finally, the distance over which singlet oxygen can diffuse in a viscous cellular medium, as found inside chloroplasts, is analysed.K.R.N and J.B.A are very grateful to the Research Council of Norway (Project
191102) and Junta de Castilla y León (Project CSI002A10-2).Peer reviewe
Profil Permeabilitas Berdasarkan Struktur Morfologi Membran Polietersulfon Pada Pemekatan Larutan Tokoferol
Separation technique by membrane technology has been widely applied for separation and purification of minor components from vegetable oil. Membrane was prepared and modified in several way in order to improve the filtration performance in purification process of vegetable oil. In this work, the filtration performance of three types of polyethersulfone hollow fiber membrane was investigated. The main objective of this research was to study the effect of membranes type on the filtration performance of tocopherol solution. Three series of filtration experiment were conducted by using fabricated membrane by dissolving of polyethersulfone (PES) in N-methyl pyrrolydone (NMP) with different polymer composition. The membranes was M1 = PES 20 % + NMP, M2 = PES 18 % + NMP, and M3= PES 20 %+ Polyvinyl pyrrolidone (PVP 5 %) + NMP. The difference structure of membrans was confirmed by scanning electron microscopy measurement. The permeability profile of tocopherol solution of 500 ppm was observed by using a single module of hollow fiber membrane with filtration flow of pressure driven inside (PDI). It is shown that, the permeability of tocopherol solution was maximum and stable using PES membrane was composed by M3 system. Moreover, the improvement of tocopherol concentration in retentate solution was about two times higher than that the original solution that was obtained from filtration system of M1 membrane
Regional diversity in the murine cortical vascular network is revealed by synchrotron X-ray tomography and is amplified with age
Cortical bone is permeated by a system of pores, occupied by the blood supply and osteocytes. With ageing, bone mass reduction and disruption of the microstructure are associated with reduced vascular supply. Insight into the regulation of the blood supply to the bone could enhance the understanding of bone strength determinants and fracture healing. Using synchrotron radiation-based computed tomography, the distribution of vascular canals and osteocyte lacunae was assessed in murine cortical bone and the influence of age on these parameters was investigated. The tibiofibular junction from 15-week- and 10-month-old female C57BL/6J mice were imaged post-mortem. Vascular canals and three-dimensional spatial relationships between osteocyte lacunae and bone surfaces were computed for both age groups. At 15 weeks, the posterior region of the tibiofibular junction had a higher vascular canal volume density than the anterior, lateral and medial regions. Intracortical vascular networks in anterior and posterior regions were also different, with connectedness in the posterior higher than the anterior at 15 weeks. By 10 months, cortices were thinner, with cortical area fraction and vascular density reduced, but only in the posterior cortex. This provided the first evidence of age-related effects on murine bone porosity due to the location of the intracortical vasculature. Targeting the vasculature to modulate bone porosity could provide an effective way to treat degenerative bone diseases, such as osteoporosis
Spectral dynamic causal modelling in healthy women reveals brain connectivity changes along the menstrual cycle
Longitudinal menstrual cycle studies allow to investigate the effects of ovarian hormones on brain organization. Here, we use spectral dynamic causal modelling (spDCM) in a triple network model to assess effective connectivity changes along the menstrual cycle within and between the default mode, salience and executive control networks (DMN, SN, and ECN). Sixty healthy young women were scanned three times along their menstrual cycle, during early follicular, pre-ovulatory and mid-luteal phase. Related to estradiol, right before ovulation the left insula recruits the ECN, while the right middle frontal gyrus decreases its connectivity to the precuneus and the DMN decouples into anterior/posterior parts. Related to progesterone during the mid-luteal phase, the insulae (SN) engage to each other, while decreasing their connectivity to parietal ECN, which in turn engages the posterior DMN. When including the most confident connections in a leave-one out cross-validation, we find an above-chance prediction of the left-out subjects’ cycle phase. These findings corroborate the plasticity of the female brain in response to acute hormone fluctuations and may help to further understand the neuroendocrine interactions underlying cognitive changes along the menstrual cycle
Prevalence of Giardia duodenalis Infection in Household Cats of Ahvaz District, South-West of Iran
Background: The occurrence of Giardia duodenalis in cats is of potential significance from both clinical and public health perspectives. The object of this study was antigenic detection of G. duodenalis in household cats of Ahvaz district, South-West of Iran. Methods: The prevalence of G. duodenalis was determined in fecal samples by two techniques: centrifugation-flotation and a commercial Giardia Antigen Test Kit (immunochromatography assay) in 150 household cats of different ages among referred cases to Veterinary Hospital of Ahvaz University from January 2008 to February 2010. Results: Five out of 150 fecal samples (3.33%) were positive for antigen of G. duodenalis by immunochromatography assay. The prevalence was significantly higher in young cats less than 6 months (15.79%) compared with adult cats 6 months – 3 years (1.37%) (P=0.027) and above 3 years (1.72%) (P=0.044). The infection had more prevalence in diarrheic cats (17.39%) compared with non-diarrheic cats (0.79%) and the difference was significant (P=0.02) as well. The prevalence was higher in male cats (3.41%) than females (3.23%) and in the season of autumn (6.06%), but the difference was not significant between the prevalence of infection relative to host gender and season (P>0.05). Microscopy examinatio
Occurence of Solanum elaeagnifolium Cav. in Mysore city, Karnataka
This article does not have an abstract
Nanosecond laser photolysis studies of chlorosomes and artificial aggregates containing bacteriochlorophyll e: Evidence for the proximity of carotenoids and bacteriochlorophyll a in chlorosomes from Chlorobium phaeobacteroides strain CL1401
Time-resolved, laser-induced changes in absorbance, ΔA(λ; t), have been recorded with a view to probing pigment–pigment interactions in chlorosomes (control as well as carotenoid-depleted) and artificial aggregates of bacteriochlorophyll e (BChle). Control chlorosomes were isolated from Chlorobium phaeobacteroides strain CL1401, whose chromophores comprise BChle, bacteriochlorophyll a (BChla) and several carotenoid (Car) pigments; Car-depleted chlorosomes, from cells grown in cultures containing 2-hydroxybiphenyl. Artificial aggregates were prepared by dispersing BChle in aqueous phase in the presence of monogalactosyl diglyceride. In chlorosomes ΔA(λ; t) shows, besides a signal attributable to triplet Car (with a half-life of about 4 μs), signals in the Qy regions of both BChl. The BChla signal decays at the same rate as the Car signal, which is explained by postulating that some Car are in intimate contact with some baseplate BChla pigments, and that when a ground-state Car changes into a triplet Car, the absorption spectrum of its BChla neighbors undergoes a concomitant change (termed transient environment-induced perturbation). The signal in the Qy-region of BChle behaves differently: its amplitude falls, under reducing conditions, by more than a factor of two during the first 0.5 μs (a period during which the Car signal suffers negligible diminution), and is much smaller under nonreducing conditions. The BChle signal is also attributed to transient environment-induced perturbation, but in this case the perturber is a BChle photoproduct (probably a triplet or a radical ion). The absence of long-lived BChle triplets in all three systems, and of long-lived BChla triplets in chlorosomes, indicates that BChle in densely packed assemblies is less vulnerable to photodamage than monomeric BChle and that, in chlorosome, BChla rather than BChle needs, and receives, photoprotection from an adjacent Car.Research Council of Norway. EU (contract FMRX-CT96-0081)Peer reviewe
- …