25,299 research outputs found
Advanced passive communication satellite systems comparison studies. Volume 2 - Technical discussion Final report
Passive communication satellites feasibility for Comsat system - Vol.
Depletion potentials near geometrically structured substrates
Using the recently developed so-called White Bear version of Rosenfeld's
Fundamental Measure Theory we calculate the depletion potentials between a
hard-sphere colloidal particle in a solvent of small hard spheres and simple
models of geometrically structured substrates: a right-angled wedge or edge. In
the wedge geometry, there is a strong attraction beyond the corresponding one
near a planar wall that significantly influences the structure of colloidal
suspensions in wedges. In accordance with an experimental study, for the edge
geometry we find a free energy barrier of the order of several which
repels a big colloidal particle from the edge.Comment: 7 pages, 7 figure
Advanced passive communication satellite systems comparison studies. Volume 1 - Summary Final report
Passive communication satellites feasibility for Comsat system - Vol.
Aging near rough and smooth boundaries in colloidal glasses
We use confocal microscopy to study the aging of a bidisperse colloidal glass
near rough and smooth boundaries. Near smooth boundaries, the particles form
layers, and particle motion is dramatically slower near the boundary as
compared to the bulk. Near rough boundaries, the layers nearly vanish, and
particle motion is nearly identical to that of the bulk. The gradient in
dynamics near the boundaries is demonstrated to be a function of the gradient
in structure for both types of boundaries.Our observations show that
wall-induced layer structures strongly influence aging.Comment: 8 pages, 7 figure
Recommended from our members
Pathways of genetic adaptation: multistep origin of mutants under selection without induced mutagenesis in Salmonella enterica.
In several bacterial systems, mutant cell populations plated on growth-restricting medium give rise to revertant colonies that accumulate over several days. One model suggests that nongrowing parent cells mutagenize their own genome and thereby create beneficial mutations (stress-induced mutagenesis). By this model, the first-order induction of new mutations in a nongrowing parent cell population leads to the delayed accumulation of visible colonies. In an alternative model (selection only), selective conditions allow preexisting small-effect mutants to initiate clones that grow and give rise to faster-growing mutants. By the selection-only model, the delay in appearance of revertant colonies reflects (1) the time required for initial clones to reach a size sufficient to allow the second mutation plus (2) the time required for growth of the improved subclone. We previously characterized a system in which revertant colonies accumulate slowly and contain cells with two mutations, one formed before plating and one after. This left open the question of whether mutation rates increase under selection. Here we measure the unselected formation rate and the growth contribution of each mutant type. When these parameters are used in a graphic model of revertant colony development, they demonstrate that no increase in mutation rate is required to explain the number and delayed appearance of two of the revertant types
Ballistic heat transport of quantum spin excitations as seen in SrCuO2
Fundamental conservation laws predict ballistic, i.e., dissipationless
transport behaviour in one-dimensional quantum magnets. Experimental evidence,
however, for such anomalous transport has been lacking ever since. Here we
provide experimental evidence for ballistic heat transport in a S=1/2
Heisenberg chain. In particular, we investigate high purity samples of the
chain cuprate SrCuO2 and observe a huge magnetic heat conductivity
. An extremely large spinon mean free path of more than a
micrometer demonstrates that is only limited by extrinsic
scattering processes which is a clear signature of ballistic transport in the
underlying spin model
Effective s- and p-Wave Contact Interactions in Trapped Degenerate Fermi Gases
The structure and stability of dilute degenerate Fermi gases trapped in an
external potential is discussed with special emphasis on the influence of s-
and p-wave interactions. In a first step an Effective Contact Interaction for
all partial waves is derived, which reproduces the energy spectrum of the full
potential within a mean-field model space. Using the s- and p-wave part the
energy density of the multi-component Fermi gas is calculated in Thomas-Fermi
approximation. On this basis the stability of the one- and two-component Fermi
gas against mean-field induced collapse is investigated. Explicit stability
conditions in terms of density and total particle number are given. For the
single-component system attractive p-wave interactions limit the density of the
gas. In the two-component case a subtle competition of s- and p-wave
interactions occurs and gives rise to a rich variety of phenomena. A repulsive
p-wave part, for example, can stabilize a two-component system that would
otherwise collapse due to an attractive s-wave interaction. It is concluded
that the p-wave interaction may have important influence on the structure of
degenerate Fermi gases and should not be discarded from the outset.Comment: 18 pages, 11 figures (using RevTEX4
- …
