1,299 research outputs found
Angular Differential Imaging: a Powerful High-Contrast Imaging Technique
Angular differential imaging is a high-contrast imaging technique that
reduces quasi-static speckle noise and facilitates the detection of nearby
companions. A sequence of images is acquired with an altitude/azimuth telescope
while the instrument field derotator is switched off. This keeps the instrument
and telescope optics aligned and allows the field of view to rotate with
respect to the instrument. For each image, a reference PSF is constructed from
other appropriately-selected images of the same sequence and subtracted to
remove quasi-static PSF structure. All residual images are then rotated to
align the field and are combined. Observed performances are reported for Gemini
North data. It is shown that quasi-static PSF noise can be reduced by a factor
\~5 for each image subtraction. The combination of all residuals then provides
an additional gain of the order of the square root of the total number of
acquired images. A total speckle noise attenuation of 20-50 is obtained for
one-hour long observing sequences compared to a single 30s exposure. A PSF
noise attenuation of 100 was achieved for two-hour long sequences of images of
Vega, reaching a 5-sigma contrast of 20 magnitudes for separations greater than
8". For a 30-minute long sequence, ADI achieves 30 times better signal-to-noise
than a classical observation technique. The ADI technique can be used with
currently available instruments to search for ~1MJup exoplanets with orbits of
radii between 50 and 300 AU around nearby young stars. The possibility of
combining the technique with other high-contrast imaging methods is briefly
discussed.Comment: 27 pages, 7 figures, accepted for publication in Ap
Astrometric Monitoring of the HR 8799 Planets: Orbit Constraints from Self-Consistent Measurements
We present new astrometric measurements from our ongoing monitoring campaign
of the HR 8799 directly imaged planetary system. These new data points were
obtained with NIRC2 on the W.M. Keck II 10 meter telescope between 2009 and
2014. In addition, we present updated astrometry from previously published
observations in 2007 and 2008. All data were reduced using the SOSIE algorithm,
which accounts for systematic biases present in previously published
observations. This allows us to construct a self-consistent data set derived
entirely from NIRC2 data alone. From this dataset, we detect acceleration for
two of the planets (HR 8799b and e) at 3. We also assess possible
orbital parameters for each of the four planets independently. We find no
statistically significant difference in the allowed inclinations of the
planets. Fitting the astrometry while forcing coplanarity also returns
consistent to within 1 of the best fit values, suggesting that if
inclination offsets of 20 are present, they are not detectable
with current data. Our orbital fits also favor low eccentricities, consistent
with predictions from dynamical modeling. We also find period distributions
consistent to within 1 with a 1:2:4:8 resonance between all planets.
This analysis demonstrates the importance of minimizing astrometric systematics
when fitting for solutions to highly undersampled orbits.Comment: 18 pages, 11 figures. Accepted for publication in A
Direct Imaging of Multiple Planets Orbiting the Star HR 8799
Direct imaging of exoplanetary systems is a powerful technique that can
reveal Jupiter-like planets in wide orbits, can enable detailed
characterization of planetary atmospheres, and is a key step towards imaging
Earth-like planets. Imaging detections are challenging due to the combined
effect of small angular separation and large luminosity contrast between a
planet and its host star. High-contrast observations with the Keck and Gemini
telescopes have revealed three planets orbiting the star HR 8799, with
projected separations of 24, 38, and 68 astronomical units. Multi-epoch data
show counter-clockwise orbital motion for all three imaged planets. The low
luminosity of the companions and the estimated age of the system imply
planetary masses between 5 and 13 times that of Jupiter. This system resembles
a scaled-up version of the outer portion of our Solar System.Comment: 30 pages, 5 figures, Research Article published online in Science
Express Nov 13th, 200
The Structure of High Strehl Ratio Point-Spread Functions
We describe the symmetries present in the point-spread function (PSF) of an
optical system either located in space or corrected by an adaptive o to Strehl
ratios of about 70% and higher. We present a formalism for expanding the PSF to
arbitrary order in terms of powers of the Fourier transform of the residual
phase error, over an arbitrarily shaped and apodized entrance aperture. For
traditional unapodized apertures at high Strehl ratios, bright speckles pinned
to the bright Airy rings are part of an antisymmetric perturbation of the
perfect PSF, arising from the term that is first order in the residual phase
error. There are two symmetric second degree terms. One is negative at the
center, and, like the first order term, is modulated by the perfect image's
field strength -- it reduces to the Marechal approximation at the center of the
PSF. The other is non-negative everywhere, zero at the image center, and can be
responsible for an extended halo -- which limits the dynamic range of faint
companion detection in the darkest portions of the image. In regimes where one
or the other term dominates the speckles in an image, the symmetry of the
dominant term can be exploited to reduce the effect of those speckles,
potentially by an order of magnitude or more. We demonstrate the effects of
both secondary obscuration and pupil apodization on the structure of residual
speckles, and discuss how these symmetries can be exploited by appropriate
telescope and instrument design, observing strategies, and filter bandwidths to
improve the dynamic range of high dynamic range AO and space-based
observations. Finally, we show that our analysis is relevant to high dynamic
range coronagraphy.Comment: Accepted for publication in ApJ; 20 pages, 4 figure
Speckle Control with a remapped-pupil PIAA-coronagraph
The PIAA is a now well demonstrated high contrast technique that uses an
intermediate remapping of the pupil for high contrast coronagraphy
(apodization), before restoring it to recover classical imaging capabilities.
This paper presents the first demonstration of complete speckle control loop
with one such PIAA coronagraph. We show the presence of a complete set of
remapping optics (the so-called PIAA and matching inverse PIAA) is transparent
to the wavefront control algorithm. Simple focal plane based wavefront control
algorithms can thus be employed, without the need to model remapping effects.
Using the Subaru Coronagraphic Extreme AO (SCExAO) instrument built for the
Subaru Telescope, we show that a complete PIAA-coronagraph is compatible with a
simple implementation of a speckle nulling technique, and demonstrate the
benefit of the PIAA for high contrast imaging at small angular separation.Comment: 6 figures, submitted to PAS
The VAST Survey - IV. A wide brown dwarf companion to the A3V star Delphini
We report the discovery of a wide co-moving substellar companion to the
nearby ( pc) A3V star Delphini based on imaging and
follow-up spectroscopic observations obtained during the course of our
Volume-limited A-Star (VAST) multiplicity survey. Del was observed over
a five-year baseline with adaptive optics, revealing the presence of a
previously-unresolved companion with a proper motion consistent with that of
the A-type primary. The age of the Del system was estimated as
Myr based on the position of the primary on the colour-magnitude
and temperature-luminosity diagrams. Using intermediate-resolution
near-infrared spectroscopy, the spectrum of Del B is shown to be
consistent with a mid-L dwarf (L), at a temperature of K.
Combining the measured near-infrared magnitude of Del B with the
estimated temperature leads to a model-dependent mass estimate of
M, corresponding to a mass ratio of . At a
projected separation of au, Del B is among the most
widely-separated and extreme-mass ratio substellar companions to a
main-sequence star resolved to-date, providing a rare empirical constraint of
the formation of low-mass ratio companions at extremely wide separations.Comment: 12 pages, 11 figures, accepted for publication in the Monthly Notices
of the Royal Astronomical Society, 2014 September 25. Revised to incorporate
typographical errors noted during the proofing proces
The VAST Survey - III. The multiplicity of A-type stars within 75 pc
With a combination of adaptive optics imaging and a multi-epoch common proper
motion search, we have conducted a large volume-limited (D 75 pc)
multiplicity survey of A-type stars, sensitive to companions beyond 30 au. The
sample for the Volume-limited A-STar (VAST) survey consists of 435 A-type
stars: 363 stars were observed with adaptive optics, 228 stars were searched
for wide common proper motion companions and 156 stars were measured with both
techniques. The projected separation coverage of the VAST survey extends from
30 to 45,000 au. A total of 137 stellar companions were resolved, including 64
new detections from the VAST survey, and the companion star fraction, projected
separation distribution and mass ratio distribution were measured. The
separation distribution forms a log-normal distribution similar to the
solar-type binary distribution, but with a peak shifted to a significantly
wider value of 387 (+132,-98) au. Integrating the fit to the distribution over
the 30 to 10,000 au observed range, the companion star fraction for A-type
stars is estimated as 33.8%+-2.6%. The mass ratio distribution of closer (<125
au) binaries is distinct from that of wider systems, with a flat distribution
for close systems and a distribution that tends towards smaller mass ratios for
wider binaries. Combining this result with previous spectroscopic surveys of
A-type stars gives an estimate of the total companion star fraction of
68.9%+-7.0%. The most complete assessment of higher order multiples was
estimated from the 156-star subset of the VAST sample with both adaptive optics
and common proper motion measurements, combined with a literature search for
companions, yielding a lower limit on the frequency of single, binary, triple,
quadruple and quintuple A-type star systems of 56.4 (-4.0,+3.8), 32.1
(-3.5,+3.9), 9.0 (-1.8,+2.8), 1.9 (-0.6,+1.8) and 0.6 (-0.2,+1.4) per cent,
respectively.Comment: 46 pages, 24 figures. Accepted for publication in the Monthly Notices
of the Royal Astronomical Society, 7th October 201
Recommended from our members
Planet Formation Instrument for the Thirty Meter Telescope
In the closing years of the 20th Century humankind began its exploration of the planetary systems in the solar neighborhood. Precision radial velocity measurements have now yielded the discovery of over 160 planets. Direct imaging of these planets, as opposed to detection of the effects of orbital motion on their parent star, is now feasible, and the first young planet in a wide orbit may have been detected using adaptive optics systems. Gemini and the VLT are building the first generation of high contrast adaptive optics systems, which deliver planet-imaging performance within few Airy rings of the host star. These systems will make the first surveys of the outer regions of solar systems by detecting the self-luminous radiation of young planets. These instruments will establish whether Jovian planets form predominantly through 'top-down' (global gravitational instability) or 'bottom-up' (core accretion) processes. The 8-m 'extreme' AO systems cannot see close enough to the host stars to image Doppler planets, and they cannot reach the relatively distant, young clusters and associations where planets are forming. The Planet Formation Instrument will use the nearly four-fold improved angular resolution of TMT to peer into the inner solar systems of Doppler-planet bearing stars to yield a unified sample of planets with known Keplerian orbital elements and atmospheric properties. In star formation regions, where T Tauri stars (young solar type stars) are found in abundance, PFI can see into the snow line, where the icy cores of planets like Jupiter must have formed. Thus, TMT will be the first facility to witness the formation of new planets
Formation, Survival, and Detectability of Planets Beyond 100 AU
Direct imaging searches have begun to detect planetary and brown dwarf
companions and to place constraints on the presence of giant planets at large
separations from their host star. This work helps to motivate such planet
searches by predicting a population of young giant planets that could be
detectable by direct imaging campaigns. Both the classical core accretion and
the gravitational instability model for planet formation are hard-pressed to
form long-period planets in situ. Here, we show that dynamical instabilities
among planetary systems that originally formed multiple giant planets much
closer to the host star could produce a population of giant planets at large
(~100 AU - 100000 AU) separations. We estimate the limits within which these
planets may survive, quantify the efficiency of gravitational scattering into
both stable and unstable wide orbits, and demonstrate that population analyses
must take into account the age of the system. We predict that planet scattering
creates a population of detectable giant planets on wide orbits that decreases
in number on timescales of ~10 Myr. We demonstrate that several members of such
populations should be detectable with current technology, quantify the
prospects for future instruments, and suggest how they could place interesting
constraints on planet formation models.Comment: 13 pages (emulateapj format), 10 figures, accepted for publication in
Ap
- …