667 research outputs found

    Thermodynamic Length, Time, Speed and Optimum Path to Minimize Entropy Production

    Full text link
    In addition to the Riemannian metricization of the thermodynamic state space, local relaxation times offer a natural time scale, too. Generalizing existing proposals, we relate {\it thermodynamic} time scale to the standard kinetic coefficients of irreversible thermodynamics. Criteria for minimum entropy production in slow, slightly irreversible processes are discussed. Euler-Lagrange equations are derived for optimum thermodynamic control for fixed clock-time period as well as for fixed {\it thermodynamic} time period. Only this latter requires constant thermodynamic speed as the optimum control proposed earlier. An easy-to-implement stepwise algorithm is constructed to realize control at constant thermodynamic speed. Since thermodynamic time is shown to correspond to the number of steps, thus the sophisticated task of determining thermodynamic time in real control problems can be substituted by measuring ordinary intensive variables. Most remarkably, optimum paths are Riemannian geodesics which would not be the case had we used ordinary time.Comment: revised version with essential corrections, LaTeX 13p

    Noble Gas Clusters and Nanoplasmas in High Harmonic Generation

    Get PDF
    We report a study of high harmonic generation from noble gas clusters of xenon atoms in a gas jet. Harmonic spectra were investigated as a function of backing pressure, showing spectral shifts due to the nanoplasma electrons in the clusters. At certain value of laser intensity this process may oppose the effect of the well-known ionization-induced blueshift. In addition, these cluster-induced harmonic redshifts may give the possibility to estimate cluster density and cluster size in the laser-gas jet interaction range.Comment: 5 pages, 4 figure

    Space-time extensions II

    Full text link
    The global extendibility of smooth causal geodesically incomplete spacetimes is investigated. Denote by γ\gamma one of the incomplete non-extendible causal geodesics of a causal geodesically incomplete spacetime (M,gab)(M,g_{ab}). First, it is shown that it is always possible to select a synchronised family of causal geodesics Γ\Gamma and an open neighbourhood U\mathcal{U} of a final segment of γ\gamma in MM such that U\mathcal{U} is comprised by members of Γ\Gamma, and suitable local coordinates can be defined everywhere on U\mathcal{U} provided that γ\gamma does not terminate either on a tidal force tensor singularity or on a topological singularity. It is also shown that if, in addition, the spacetime, (M,gab)(M,g_{ab}), is globally hyperbolic, and the components of the curvature tensor, and its covariant derivatives up to order k1k-1 are bounded on U\mathcal{U}, and also the line integrals of the components of the kthk^{th}-order covariant derivatives are finite along the members of Γ\Gamma---where all the components are meant to be registered with respect to a synchronised frame field on U\mathcal{U}---then there exists a CkC^{k-} extension Φ:(M,gab)(M^,g^ab)\Phi: (M,g_{ab}) \rightarrow (\widehat{M},\widehat{g}_{ab}) so that for each γˉΓ\bar\gamma\in\Gamma, which is inextendible in (M,gab)(M,g_{ab}), the image, Φγˉ\Phi\circ\bar\gamma, is extendible in (M^,g^ab)(\widehat{M},\widehat{g}_{ab}). Finally, it is also proved that whenever γ\gamma does terminate on a topological singularity (M,gab)(M,g_{ab}) cannot be generic.Comment: 42 pages, no figures, small changes to match the published versio

    Derivation of the Matalon-Packter law for Liesegang patterns

    Full text link
    Theoretical models of the Liesegang phenomena are studied and simple expressions for the spacing coefficients characterizing the patterns are derived. The emphasis is on displaying the explicit dependences on the concentrations of the inner- and the outer-electrolytes. Competing theories (ion-product supersaturation, nucleation and droplet growth, induced sol- coagulation) are treated with the aim of finding the distinguishing features of the theories. The predictions are compared with experiments and the results suggest that the induced sol-coagulation theory is the best candidate for describing the experimental observations embodied in the Matalon-Packter law.Comment: 9 pages, 7 figures, RevTe

    A Note on Hartle-Hawking Vacua

    Get PDF
    The purpose of this note is to establish the basic properties--- regularity at the horizon, time independence, and thermality--- of the generalized Hartle-Hawking vacua defined in static spacetimes with bifurcate Killing horizon admitting a regular Euclidean section. These states, for free or interacting fields, are defined by a path integral on half the Euclidean section. The emphasis is on generality and the arguments are simple but formal.Comment: 5 pages, LaTe

    Magnetization distribution in the transverse Ising chain with energy flux

    Full text link
    The zero-temperature transverse Ising chain carrying an energy flux j_E is studied with the aim of determining the nonequilibrium distribution functions, P(M_z) and P(M_x), of its transverse and longitudinal magnetizations, respectively. An exact calculation reveals that P(M_z) is a Gaussian both at j_E=0 and j_E not equal 0, and the width of the distribution decreases with increasing energy flux. The distribution of the order-parameter fluctuations, P(M_x), is evaluated numerically for spin-chains of up to 20 spins. For the equilibrium case (j_E=0), we find the expected Gaussian fluctuations away from the critical point while the critical order-parameter fluctuations are shown to be non-gaussian with a scaling function Phi(x)=Phi(M_x/)=P(M_x) strongly dependent on the boundary conditions. When j_E not equal 0, the system displays long-range, oscillating correlations but P(M_x) is a Gaussian nevertheless, and the width of the Gaussian decreases with increasing j_E. In particular, we find that, at critical transverse field, the width has a j_E^(-3/8) asymptotic in the j_E -> 0 limit.Comment: 8 pages, 5 ps figure

    Reaction-diffusion fronts with inhomogeneous initial conditions

    Full text link
    Properties of reaction zones resulting from A+B -> C type reaction-diffusion processes are investigated by analytical and numerical methods. The reagents A and B are separated initially and, in addition, there is an initial macroscopic inhomogeneity in the distribution of the B species. For simple two-dimensional geometries, exact analytical results are presented for the time-evolution of the geometric shape of the front. We also show using cellular automata simulations that the fluctuations can be neglected both in the shape and in the width of the front.Comment: 11 pages, 3 figures, submitted to J. Phys.
    corecore