73 research outputs found

    Analgesic effects of antidepressants alone and after their local co-administration with morphine in a rat model of neuropathic pain

    Get PDF
    Background The therapy of neuropathic pain may include the use of co-analgesics, such as antidepressants, however, their desired analgesic effect is associated with significant side effects. An alternative approach to this is their local administration which has been proposed, but there is little data regarding their local co-administration with morphine and the nature of the interaction between morphine and either doxepin or venlafaxine, two antidepressant drugs that have been recently used in neuropathic pain therapies. Methods This study was performed on rats after chronic constriction injury (CCI) to the sciatic nerve. The von Frey and Hargreaves’ tests were used to assess mechanical allodynia and thermal hyperalgesia, respectively, after intraplantar (ipl) or subcutaneous (sc) administration of amitriptyline, doxepin, or venlafaxine, or their ipl co-administration with morphine on day 12–16 after injury. Results The ipl administration of amitriptyline (3, 15 mg), doxepin (1, 5, 10, 15 mg), or venlafaxine (2, 7 mg) was effective in antagonizing CCI-induced allodynia. Their sc injection at a site distal to the injured side, did not induce alterations in pain thresholds, which supports the local mode of action. Of the three antidepressants used in this study, only ipl co-administration of amitriptyline with morphine significantly enhanced its effect in contrast to doxepin and venlafaxine, both of which weakened the analgesic effect of morphine. Conclusions In summary, the results suggest that when amitriptyline (but not doxepin or venlafaxine) is locally co-administered with morphine the effectiveness under neuropathic pain is enhanced, although additional studies are necessary to explain differential mechanisms of interaction of antidepressant drugs with morphine after local administration

    Modulation of melanocortin- induced changes in spinal nociception by ”-opioid receptor agonist and antagonist in neuropathic rats

    No full text
    Co-localization of opioid and melanocortin receptor expression, especially at the spinal cord level in the dorsal horn and in the gray matter surrounding the central canal led to the suggestion that melanocortins might play a role in nociceptive processes. In the present studies, we aimed to determine the effects of melanocortins, administered intrathecally, on allodynia, and to ascertain whether there is an interaction between opioid and melanocortin systems at the spinal cord level. Neuropathic pain was induced by chronic constriction injury (CCI) of the right sciatic nerve in rats. Tactile allodynia was assessed using von Frey filaments, while thermal hyperlagesia was evaluated in cold water allodynia test. In the present experiments, melanocortin receptor antagonist, SHU9119 was much more potent than [mu]-opioid receptor agonist, morphine after their intrathecal (i.th.) administration in neuropathic rats. SHU9119 alleviated allodynia in a comparable manner to DAMGO, a selective and potent [mu]-opioid receptor agonist. Administration of melanocortin receptor agonist, melanotan-II (MTII) increased the sensitivity to tactile and cold stimulation. Moreover, we demonstrated that the selective blockade of [mu]-opioid receptor by cyprodime (CP) enhanced antiallodynic effect of SHU9119 as well as pronociceptive action of MTII, whereas the combined administration of [mu] receptor agonist (DAMGO) and SHU9119 significantly reduced the analgesic effect of those ligands. DAMGO also reversed the proallodynic effect of melanocortin receptor agonist, MTII. In conclusion, it seems that the endogenous opioidergic system acts as a functional antagonist of melanocortinergic system, and [mu]-opioid receptor activity appears to be involved in the modulation of melanocortin system function

    The role of nitric oxide in genetic model of absence epilepsy in rats

    No full text
    Item does not contain fulltex

    Antagonists of the Îș-opioid receptor enhance allodynia in rats and mice after sciatic nerve ligation

    No full text
    1. The administration of Îș-opioid receptor antagonists, nor-binaltorphimine (norBNI) and 5â€Č-guanidinonaltrindole (GNTI) enhanced allodynia in rats and mice after sciatic nerve ligation. In order to understand the mechanism underlying this effect, we examined the possible involvement of the endogenous ligand of Îș-opioid receptor dynorphin. 2. The experiments were carried out on male Wistar rats and on Albino-Swiss mice. The rats had been implanted with a catheter 7 days earlier in the subarachnoid space of the spinal cord. Intrathecal (i.t.) administrations in mice were made by lumbar puncture. The animals were i.t. injected with norBNI, GNTI (Îș-opioid receptor antagonists), dynorphin A(1–17) antiserum (DYN A/S), ketamine (NMDA receptor antagonist) and their combinations. The nociceptive sensitivity was assessed using the mechanical (von Frey) and therma allodynia tests on days 2–4 and 8–10 after the sciatic nerve ligation. 3. Both antagonists, norBNI and GNTI, significantly enhanced mechanical and therma allodynia in rats and mice with neuropathic pain. The potentiation of allodynia after the administration of norBNI or GNTI was inhibited by earlier administration of DYN A/S or by ketamine. 4. Our results suggest that allodynia is mediated through nonopioid effect of the endogenous opioid peptide, dynorphin. The nonopioid action is potentiated by the blockade of Îș-opioid receptors, and corresponding to the elevation of prodynorphin mRNA level in neuropathic pain. Furthermore, the potentiation of allodynia after the administration of the above drugs appears to be mediated through the activation of NMDA receptors directly by dynorphin
    • 

    corecore