708 research outputs found
Statistical Properties of Galactic Starlight Polarization
We present a statistical analysis of Galactic interstellar polarization from
the largest compilation available of starlight data. The data comprises ~ 9300
stars of which we have selected ~ 5500 for our analysis. We find a nearly
linear growth of mean polarization degree with extinction. The amplitude of
this correlation shows that interstellar grains are not fully aligned with the
Galactic magnetic field, which can be interpreted as the effect of a large
random component of the field. In agreement with earlier studies of more
limited scope, we estimate the ratio of the uniform to the random
plane-of-the-sky components of the magnetic field to be B_u/B_r = 0.8.
Moreover, a clear correlation exists between polarization degree and
polarization angle what provides evidence that the magnetic field geometry
follows Galactic structures on large-scales. The angular power spectrum C_l of
the starlight polarization degree for Galactic plane data (|b| < 10 deg) is
consistent with a power-law, C_l ~ l^{-1.5} (where l ~ 180 deg/\theta is the
multipole order), for all angular scales \theta > 10 arcmin. An investigation
of sparse and inhomogeneous sampling of the data shows that the starlight data
analyzed traces an underlying polarized continuum that has the same power
spectrum slope, C_l ~ l^{-1.5}. Our findings suggest that starlight data can be
safely used for the modeling of Galactic polarized continuum emission at other
wavelengths.Comment: 31 pages, 11 figures. Minor corrections and some clarifications
included. Matches version accepted for publication by the Astrophysical
Journa
Interstellar dust in the BOOMERanG maps
Interstellar dust (ISD) emission is present in the mm-wave maps obtained by the BOOMERanG experiment at intermediate and high Galactic latitudes. We find that, while being sub-dominant at the lower frequencies (90,150, 240 GHz), thermal emission from ISD is dominant at 410 GHz, and is well correlated with the IRAS map at 100 µm. We find also that the angular power spectrum of ISD fluctuations at 410 GHz is a power law, and its level is negligible with respect to the angular power spectrum of the Cosmic Microwave Background (CMB) at 90 and 150 GHz
Foregrounds in the BOOMERANG-LDB data: a preliminary rms analysis
We present a preliminary analysis of the BOOMERanG LDB maps, focused on
foregrounds. BOOMERanG detects dust emission at moderately low galactic
latitudes () in bands centered at 90, 150, 240, 410 GHz. At higher
Galactic latitudes, we use the BOOMERanG data to set conservative upper limits
on the level of contamination at 90 and 150 GHz. We find that the mean square
signal correlated with the IRAS/DIRBE dust template is less than 3% of the mean
square signal due to CMB anisotropy
The Cosmic Microwave Background & Inflation, Then & Now
Boomerang, Maxima, DASI, CBI and VSA significantly increase the case for
accelerated expansion in the early universe (the inflationary paradigm) and at
the current epoch (dark energy dominance), especially when combined with data
on high redshift supernovae (SN1) and large scale structure (LSS). There are
``7 pillars of Inflation'' that can be shown with the CMB probe, and at least
5, and possibly 6, of these have already been demonstrated in the CMB data: (1)
a large scale gravitational potential; (2) acoustic peaks/dips; (3) damping due
to shear viscosity; (4) a Gaussian (maximally random) distribution; (5)
secondary anisotropies; (6) polarization. A 7th pillar, anisotropies induced by
gravity wave quantum noise, could be too small. A minimal inflation parameter
set, \omega_b,\omega_{cdm}, \Omega_{tot}, \Omega_Q,w_Q,n_s,\tau_C, \sigma_8},
is used to illustrate the power of the current data. We find the CMB+LSS+SN1
data give \Omega_{tot} =1.00^{+.07}_{-.03}, consistent with (non-baroque)
inflation theory. Restricting to \Omega_{tot}=1, we find a nearly scale
invariant spectrum, n_s =0.97^{+.08}_{-.05}. The CDM density, \Omega_{cdm}{\rm
h}^2 =.12^{+.01}_{-.01}, and baryon density, \Omega_b {\rm h}^2 =
>.022^{+.003}_{-.002}, are in the expected range. (The Big Bang nucleosynthesis
estimate is 0.019\pm 0.002.) Substantial dark (unclustered) energy is inferred,
\Omega_Q \approx 0.68 \pm 0.05, and CMB+LSS \Omega_Q values are compatible with
the independent SN1 estimates. The dark energy equation of state, crudely
parameterized by a quintessence-field pressure-to-density ratio w_Q, is not
well determined by CMB+LSS (w_Q < -0.4 at 95% CL), but when combined with SN1
the resulting w_Q < -0.7 limit is quite consistent with the w_Q=-1 cosmological
constant case.Comment: 20 pages, 8 figures, in Theoretical Physics, MRST 2002: A Tribute to
George Libbrandt (AIP), eds. V. Elias, R. Epp, R. Myer
The Sunyaev-Zeldovich effect in CMB-calibrated theories applied to the Cosmic Background Imager anisotropy power at l > 2000
We discuss the nature of the possible high-l excess in the Cosmic Microwave
Background (CMB) anisotropy power spectrum observed by the Cosmic Background
Imager (CBI). We probe the angular structure of the excess in the CBI deep
fields and investigate whether it could be due to the scattering of CMB photons
by hot electrons within clusters, the Sunyaev-Zeldovich (SZ) effect. We
estimate the density fluctuation parameters for amplitude, sigma_8, and shape,
Gamma, from CMB primary anisotropy data and other cosmological data. We use the
results of two separate hydrodynamical codes for Lambda-CDM cosmologies,
consistent with the allowed sigma_8 and Gamma values, to quantify the expected
contribution from the SZ effect to the bandpowers of the CBI experiment and
pass simulated SZ effect maps through our CBI analysis pipeline. The result is
very sensitive to the value of sigma_8, and is roughly consistent with the
observed power if sigma_8 ~ 1. We conclude that the CBI anomaly could be a
result of the SZ effect for the class of Lambda-CDM concordance models if
sigma_8 is in the upper range of values allowed by current CMB and Large Scale
Structure (LSS) data.Comment: Accepted by The Astrophysical Journal; 17 pages including 12 color
figures. v2 matches accepted version. Additional information at
http://www.astro.caltech.edu/~tjp/CBI
The Quintessential CMB, Past & Future
The past, present and future of cosmic microwave background (CMB) anisotropy
research is discussed, with emphasis on the Boomerang and Maxima balloon
experiments. These data are combined with large scale structure (LSS)
information and high redshift supernova (SN1) observations to explore the
inflation-based cosmic structure formation paradigm. Here we primarily focus on
a simplified inflation parameter set, {omega_b,omega_{cdm},Omega_{tot},
Omega_Q,w_Q, n_s,tau_C, sigma_8}. After marginalizing over the other cosmic and
experimental variables, we find the current CMB+LSS+SN1 data gives
Omega_{tot}=1.04\pm 0.05, consistent with (non-baroque) inflation theory.
Restricting to Omega_{tot}=1, we find a nearly scale invariant spectrum, n_s
=1.03 \pm 0.07. The CDM density, omega_{cdm}=0.17\pm 0.02, is in the expected
range, but the baryon density, omega_b=0.030\pm 0.004, is slightly larger than
the current nucleosynthesis estimate. Substantial dark energy is inferred,
Omega_Q\approx 0.68\pm 0.05, and CMB+LSS Omega_Q values are compatible with the
independent SN1 estimates. The dark energy equation of state, parameterized by
a quintessence-field pressure-to-density ratio w_Q, is not well determined by
CMB+LSS (w_Q<-0.3 at 95%CL), but when combined with SN1 the resulting w_Q<-0.7
limit is quite consistent with the w_Q=-1 cosmological constant case. Though
forecasts of statistical errors on parameters for current and future
experiments are rosy, rooting out systematic errors will define the true
progress.Comment: 14 pages, 3 figs., in Proc. CAPP-2000 (AIP), CITA-2000-6
Highly efficient synthesis of the tricyclic core of Taxol by cascade metathesis
An efficient enantioselective synthesis of the ABC tricyclic core of the anticancer drug Taxol is reported. The key step of this synthesis is a cascade metathesis reaction, which leads in one operation to the required tricycle if appropriate fine-tuning of the dienyne precursor is performed
Images of the Early Universe from the BOOMERanG experiment
The CMB is the fundamental tool to study the properties of the early universe and of the
universe at large scales. In the framework of the Hot Big Bang model, when we look to
the CMB we look back in time to the end of the plasma era, at a redshift ~ 1000, when
the universe was ~ 50000 times younger, ~ 1000 times hotter and ~ 10^9 times denser
than today. The image of the CMB can be used to study the physical processes there, to
infer what happened before, and also to study the background geometry of our Universe
The pre-launch Planck Sky Model: a model of sky emission at submillimetre to centimetre wavelengths
We present the Planck Sky Model (PSM), a parametric model for the generation
of all-sky, few arcminute resolution maps of sky emission at submillimetre to
centimetre wavelengths, in both intensity and polarisation. Several options are
implemented to model the cosmic microwave background, Galactic diffuse emission
(synchrotron, free-free, thermal and spinning dust, CO lines), Galactic H-II
regions, extragalactic radio sources, dusty galaxies, and thermal and kinetic
Sunyaev-Zeldovich signals from clusters of galaxies. Each component is
simulated by means of educated interpolations/extrapolations of data sets
available at the time of the launch of the Planck mission, complemented by
state-of-the-art models of the emission. Distinctive features of the
simulations are: spatially varying spectral properties of synchrotron and dust;
different spectral parameters for each point source; modeling of the clustering
properties of extragalactic sources and of the power spectrum of fluctuations
in the cosmic infrared background. The PSM enables the production of random
realizations of the sky emission, constrained to match observational data
within their uncertainties, and is implemented in a software package that is
regularly updated with incoming information from observations. The model is
expected to serve as a useful tool for optimizing planned microwave and
sub-millimetre surveys and to test data processing and analysis pipelines. It
is, in particular, used for the development and validation of data analysis
pipelines within the planck collaboration. A version of the software that can
be used for simulating the observations for a variety of experiments is made
available on a dedicated website.Comment: 35 pages, 31 figure
- …
