135 research outputs found
Microservice Transition and its Granularity Problem: A Systematic Mapping Study
Microservices have gained wide recognition and acceptance in software
industries as an emerging architectural style for autonomic, scalable, and more
reliable computing. The transition to microservices has been highly motivated
by the need for better alignment of technical design decisions with improving
value potentials of architectures. Despite microservices' popularity, research
still lacks disciplined understanding of transition and consensus on the
principles and activities underlying "micro-ing" architectures. In this paper,
we report on a systematic mapping study that consolidates various views,
approaches and activities that commonly assist in the transition to
microservices. The study aims to provide a better understanding of the
transition; it also contributes a working definition of the transition and
technical activities underlying it. We term the transition and technical
activities leading to microservice architectures as microservitization. We then
shed light on a fundamental problem of microservitization: microservice
granularity and reasoning about its adaptation as first-class entities. This
study reviews state-of-the-art and -practice related to reasoning about
microservice granularity; it reviews modelling approaches, aspects considered,
guidelines and processes used to reason about microservice granularity. This
study identifies opportunities for future research and development related to
reasoning about microservice granularity.Comment: 36 pages including references, 6 figures, and 3 table
An algebraic scheme associated with the noncommutative KP hierarchy and some of its extensions
A well-known ansatz (`trace method') for soliton solutions turns the
equations of the (noncommutative) KP hierarchy, and those of certain
extensions, into families of algebraic sum identities. We develop an algebraic
formalism, in particular involving a (mixable) shuffle product, to explore
their structure. More precisely, we show that the equations of the
noncommutative KP hierarchy and its extension (xncKP) in the case of a
Moyal-deformed product, as derived in previous work, correspond to identities
in this algebra. Furthermore, the Moyal product is replaced by a more general
associative product. This leads to a new even more general extension of the
noncommutative KP hierarchy. Relations with Rota-Baxter algebras are
established.Comment: 59 pages, relative to the second version a few minor corrections, but
quite a lot of amendments, to appear in J. Phys.
The Simons Observatory: science goals and forecasts for the enhanced Large Aperture Telescope
We describe updated scientific goals for the wide-field, millimeter-wave survey that will be produced by the Simons Observatory (SO). Significant upgrades to the 6-meter SO Large Aperture Telescope (LAT) are expected to be complete by 2028, and will include a doubled mapping speed with 30,000 new detectors and an automated data reduction pipeline. In addition, a new photovoltaic array will supply most of the observatory's power. The LAT survey will cover about 60% of the sky at a regular observing cadence, with five times the angular resolution and ten times the map depth of Planck. The science goals are to: (1) determine the physical conditions in the early universe and constrain the existence of new light particles; (2) measure the integrated distribution of mass, electron pressure, and electron momentum in the late-time universe, and, in combination with optical surveys, determine the neutrino mass and the effects of dark energy via tomographic measurements of the growth of structure at z < 3; (3) measure the distribution of electron density and pressure around galaxy groups and clusters, and calibrate the effects of energy input from galaxy formation on the surrounding environment; (4) produce a sample of more than 30,000 galaxy clusters, and more than 100,000 extragalactic millimeter sources, including regularly sampled AGN light-curves, to study these sources and their emission physics; (5) measure the polarized emission from magnetically aligned dust grains in our Galaxy, to study the properties of dust and the role of magnetic fields in star formation; (6) constrain asteroid regoliths, search for Trans-Neptunian Objects, and either detect or eliminate large portions of the phase space in the search for Planet 9; and (7) provide a powerful new window into the transient universe on time scales of minutes to years, concurrent with observations from Rubin of overlapping sky
The Atacama cosmology telescope. A measurement of the DR6 CMB lensing power spectrum and its implications for structure growth
We present new measurements of cosmic microwave background (CMB) lensing over 9400 deg2 of the sky. These lensing measurements are derived from the Atacama Cosmology Telescope (ACT) Data Release 6 (DR6) CMB data set, which consists of five seasons of ACT CMB temperature and polarization observations. We determine the amplitude of the CMB lensing power spectrum at 2.3% precision (43σ significance) using a novel pipeline that minimizes sensitivity to foregrounds and to noise properties. To ensure that our results are robust, we analyze an extensive set of null tests, consistency tests, and systematic error estimates and employ a blinded analysis framework. Our CMB lensing power spectrum measurement provides constraints on the amplitude of cosmic structure that do not depend on Planck or galaxy survey data, thus giving independent information about large-scale structure growth and potential tensions in structure measurements. The baseline spectrum is well fit by a lensing amplitude of A lens = 1.013 ± 0.023 relative to the Planck 2018 CMB power spectra best-fit ΛCDM model and A lens = 1.005 ± 0.023 relative to the ACT DR4 + WMAP best-fit model. From our lensing power spectrum measurement, we derive constraints on the parameter combination SCMBL8≡σ8(Ωm/0.3)0.25 of SCMBL8=0.818±0.022 from ACT DR6 CMB lensing alone and SCMBL8=0.813±0.018 when combining ACT DR6 and Planck NPIPE CMB lensing power spectra. These results are in excellent agreement with ΛCDM model constraints from Planck or ACT DR4 + WMAP CMB power spectrum measurements. Our lensing measurements from redshifts z ∼ 0.5–5 are thus fully consistent with ΛCDM structure growth predictions based on CMB anisotropies probing primarily z ∼ 1100. We find no evidence for a suppression of the amplitude of cosmic structure at low redshifts
The Atacama Cosmology Telescope: DR6 Gravitational Lensing Map and Cosmological Parameters
We present cosmological constraints from a gravitational lensing mass map
covering 9400 sq. deg. reconstructed from CMB measurements made by the Atacama
Cosmology Telescope (ACT) from 2017 to 2021. In combination with BAO
measurements (from SDSS and 6dF), we obtain the amplitude of matter
fluctuations at 1.8% precision,
and the Hubble
constant at
1.6% precision. A joint constraint with CMB lensing measured by the Planck
satellite yields even more precise values: ,
and . These measurements agree
well with CDM-model extrapolations from the CMB anisotropies measured
by Planck. To compare these constraints to those from the KiDS, DES, and HSC
galaxy surveys, we revisit those data sets with a uniform set of assumptions,
and find from all three surveys are lower than that from ACT+Planck
lensing by varying levels ranging from 1.7-2.1. These results motivate
further measurements and comparison, not just between the CMB anisotropies and
galaxy lensing, but also between CMB lensing probing on
mostly-linear scales and galaxy lensing at on smaller scales. We
combine our CMB lensing measurements with CMB anisotropies to constrain
extensions of CDM, limiting the sum of the neutrino masses to eV (95% c.l.), for example. Our results provide independent
confirmation that the universe is spatially flat, conforms with general
relativity, and is described remarkably well by the CDM model, while
paving a promising path for neutrino physics with gravitational lensing from
upcoming ground-based CMB surveys.Comment: 30 pages, 16 figures, prepared for submission to ApJ. Cosmological
likelihood data is here:
https://lambda.gsfc.nasa.gov/product/act/actadv_prod_table.html ; likelihood
software is here: https://github.com/ACTCollaboration/act_dr6_lenslike . Also
see companion papers Qu et al and MacCrann et al. Mass maps will be released
when papers are publishe
The Atacama Cosmology Telescope: High-resolution component-separated maps across one-third of the sky
Observations of the millimeter sky contain valuable information on a number
of signals, including the blackbody cosmic microwave background (CMB), Galactic
emissions, and the Compton- distortion due to the thermal Sunyaev-Zel'dovich
(tSZ) effect. Extracting new insight into cosmological and astrophysical
questions often requires combining multi-wavelength observations to spectrally
isolate one component. In this work, we present a new arcminute-resolution
Compton- map, which traces out the line-of-sight-integrated electron
pressure, as well as maps of the CMB in intensity and E-mode polarization,
across a third of the sky (around 13,000 sq.~deg.). We produce these through a
joint analysis of data from the Atacama Cosmology Telescope (ACT) Data Release
4 and 6 at frequencies of roughly 93, 148, and 225 GHz, together with data from
the \textit{Planck} satellite at frequencies between 30 GHz and 545 GHz. We
present detailed verification of an internal linear combination pipeline
implemented in a needlet frame that allows us to efficiently suppress Galactic
contamination and account for spatial variations in the ACT instrument noise.
These maps provide a significant advance, in noise levels and resolution, over
the existing \textit{Planck} component-separated maps and will enable a host of
science goals including studies of cluster and galaxy astrophysics, inferences
of the cosmic velocity field, primordial non-Gaussianity searches, and
gravitational lensing reconstruction of the CMB.Comment: The Compton-y map and associated products will be made publicly
available upon publication of the paper. The CMB T and E mode maps will be
made available when the DR6 maps are made publi
The Atacama Cosmology Telescope: A Measurement of the DR6 CMB Lensing Power Spectrum and its Implications for Structure Growth
We present new measurements of cosmic microwave background (CMB) lensing over
sq. deg. of the sky. These lensing measurements are derived from the
Atacama Cosmology Telescope (ACT) Data Release 6 (DR6) CMB dataset, which
consists of five seasons of ACT CMB temperature and polarization observations.
We determine the amplitude of the CMB lensing power spectrum at
precision ( significance) using a novel pipeline that minimizes
sensitivity to foregrounds and to noise properties. To ensure our results are
robust, we analyze an extensive set of null tests, consistency tests, and
systematic error estimates and employ a blinded analysis framework. The
baseline spectrum is well fit by a lensing amplitude of
relative to the Planck 2018 CMB power spectra
best-fit CDM model and relative to
the best-fit model. From our lensing power
spectrum measurement, we derive constraints on the parameter combination
of
from ACT DR6 CMB lensing alone and
when combining ACT DR6 and Planck NPIPE
CMB lensing power spectra. These results are in excellent agreement with
CDM model constraints from Planck or
CMB power spectrum measurements. Our lensing measurements from redshifts
-- are thus fully consistent with CDM structure growth
predictions based on CMB anisotropies probing primarily . We find no
evidence for a suppression of the amplitude of cosmic structure at low
redshiftsComment: 45+21 pages, 50 figures. Prepared for submission to ApJ. Also see
companion papers Madhavacheril et al and MacCrann et a
The Simons Observatory: validation of reconstructed power spectra from simulated filtered maps for the small aperture telescope survey
We present a transfer function-based method to estimate angular power spectra from filtered maps for cosmic microwave background (CMB) surveys. This is especially relevant for experiments targeting the faint primordial gravitational wave signatures in CMB polarisation at large scales, such as the Simons Observatory (SO) small aperture telescopes. While timestreams can be filtered to mitigate the contamination from low-frequency noise, usual methods that calculate the mode coupling at individual multipoles can be challenging for experiments covering large sky areas or reaching few-arcminute resolution. The method we present here, although approximate, is more practical and faster for larger data volumes. We validate it through the use of simulated observations approximating the first year of SO data, going from half-wave plate-modulated timestreams to maps, and using simulations to estimate the mixing of polarisation modes induced by an example of time-domain filtering. We show its performance through an example null test and with an end-to-end pipeline that performs inference on cosmological parameters, including the tensor-to-scalar ratio r. The performance demonstration uses simulated observations at multiple frequency bands. We find that the method can recover unbiased parameters for our simulated noise levels
The Use of Sodium to Calibrate the Transport Modeling of Water Pollution in Sandy Formations Around an Uninsulated Sewage Disposal Site
- …
