95 research outputs found

    Depinning transition in type-II superconductors

    Full text link
    The surface impedance Z(f) of conventional isotropic materials has been carefully measured for frequencies f ranging from 1 kHz to 3 MHz, allowing a detailed investigation of the depinning transition. Our results exhibit the irrelevance of classical ideas to the dynamics of vortex pinning. We propose a new picture, where the linear ac response is entirely governed by disordered boundary conditions of a rough surface, whereas in the bulk vortices respond freely. The universal law for Z(f) thus predicted is in remarkable agreement with experiment, and tentatively applies to microwave data in YBaCuO films.Comment: 4 pages, 4 figures, 14 reference

    rf-studies of vortex dynamics in isotropic type-II superconductors

    Full text link
    We have measured the surface impedance of thick superconductors in the mixed state over a broad 2 kHz - 20 MHz frequency range. The depinning cross-over is observed; but it is much broader than expected from classical theories of pinning. A striking result is the existence of size effects which invalidate the common interpretation of the low-frequency surface inductance in terms of a single penetration depth. Instead, a two-mode description of vortex dynamics, assuming free vortex flow in the bulk and surface pinning, accounts quantitatively for the spectrum of the complex apparent penetration depth.Comment: 20 pages, 6 figures, 28 reference

    Longitudinal and transverse noise in a moving Vortex Lattice

    Full text link
    We have studied the longitudinal and the transverse velocity fluctuations of a moving vortex lattice (VL) driven by a transport current. They exhibit both the same broad spectrum and the same order of magnitude. These two components are insensitive to the velocity and to a small bulk perturbation. This means that no bulk averaging over the disorder and no VL crystallization are observed. This is consistently explained referring to a previously proposed noisy flow of surface current whose elementary fluctuator is measured isotropic.Comment: accepted for publication in Phys Rev

    Shot noise in carbon nanotube based Fabry-Perot interferometers

    Get PDF
    We report on shot noise measurements in carbon nanotube based Fabry-Perot electronic interferometers. As a consequence of quantum interferences, the noise power spectral density oscillates as a function of the voltage applied to the gate electrode. The quantum shot noise theory accounts for the data quantitatively. It allows to confirm the existence of two nearly degenerate orbitals. At resonance, the transmission of the nanotube approaches unity, and the nanotube becomes noiseless, as observed in quantum point contacts. In this weak backscattering regime, the dependence of the noise on the backscattering current is found weaker than expected, pointing either to electron-electron interactions or to weak decoherence

    Separation of neutral and charge modes in one dimensional chiral edge channels

    Full text link
    Coulomb interactions have a major role in one-dimensional electronic transport. They modify the nature of the elementary excitations from Landau quasiparticles in higher dimensions to collective excitations in one dimension. Here we report the direct observation of the collective neutral and charge modes of the two chiral co-propagating edge channels of opposite spins of the quantum Hall effect at filling factor 2. Generating a charge density wave at frequency f in the outer channel, we measure the current induced by inter-channel Coulomb interaction in the inner channel after a 3-mm propagation length. Varying the driving frequency from 0.7 to 11 GHz, we observe damped oscillations in the induced current that result from the phase shift between the fast charge and slow neutral eigenmodes. We measure the dispersion relation and dissipation of the neutral mode from which we deduce quantitative information on the interaction range and parameters.Comment: 23 pages, 6 figure

    Supercollision cooling in undoped graphene

    Full text link
    Carrier mobility in solids is generally limited by electron-impurity or electron-phonon scattering depending on the most frequently occurring event. Three body collisions between carriers and both phonons and impurities are rare; they are denoted supercollisions (SCs). Elusive in electronic transport they should emerge in relaxation processes as they allow for large energy transfers. As pointed out in Ref. \onlinecite{Song2012PRL}, this is the case in undoped graphene where the small Fermi surface drastically restricts the allowed phonon energy in ordinary collisions. Using electrical heating and sensitive noise thermometry we report on SC-cooling in diffusive monolayer graphene. At low carrier density and high phonon temperature the Joule power PP obeys a PTe3P\propto T_e^3 law as a function of electronic temperature TeT_e. It overrules the linear law expected for ordinary collisions which has recently been observed in resistivity measurements. The cubic law is characteristic of SCs and departs from the Te4T_e^4 dependence recently reported for metallic graphene below the Bloch-Gr\"{u}neisen temperature. These supercollisions are important for applications of graphene in bolometry and photo-detection

    Comment to the paper : Collapse of the vortex-lattice inductance and shear modulus at the melting transition in untwinned YBa2_2Cu3_3O7_7, by Matl \QTR{em}{et al.}

    Full text link
    In a recent paper, Matl et al present a high-frequency study of the complex resistivity of a pinned vortex lattice in YBaCuO . They focus on the inductive-to-resistive transition which is investigated as a function of temperature at a constant field B0=2B_0=2 T, so that the transition is associated with the vanishing of vortex pinning strength. To our view, their conclusions rely on a rather brittle experimental body and the collapse of C66 results from an involved analysis of the finite frequency corrections to ρ(ω)\rho (\omega). These corrections are not necessary since the complex frequency spectrum has been previously interpreted by the two modes model, first proposed for low Tc materials. We think that it is more adequate to interpret the present data and should be at least considered.Comment: 4pages tex. submitted to PR

    Geometrical Dependence of High-Bias Current in Multiwalled Carbon Nanotubes

    Full text link
    We have studied the high-bias transport properties of the different shells that constitute a multiwalled carbon nanotube. The current is shown to be reduced as the shell diameter is decreased or the length is increased. We assign this geometrical dependence to the competition between electron-phonon scattering process and Zener tunneling.Comment: 4 pages, 4 figure

    Conserved spin and orbital phase along carbon nanotubes connected with multiple ferromagnetic contacts

    Get PDF
    We report on spin dependent transport measurements in carbon nanotubes based multi-terminal circuits. We observe a gate-controlled spin signal in non-local voltages and an anomalous conductance spin signal, which reveal that both the spin and the orbital phase can be conserved along carbon nanotubes with multiple ferromagnetic contacts. This paves the way for spintronics devices exploiting both these quantum mechanical degrees of freedom on the same footing.Comment: 8 pages - minor differences with published versio
    corecore