183 research outputs found

    A Latency-Aware Real-Time Video Surveillance Demo: Network Slicing for Improving Public Safety

    Full text link
    © 2021 IEEE.  Personal use of this material is permitted.  Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksWe report the automated deployment of 5G services across a latency-aware, semidisaggregated, and virtualized metro network. We summarize the key findings in a detailed analysis of end-to-end latency, service setup time, and soft-failure detection timeThe research leading to these results has received funding from the EC and BMBF through the METRO-HAUL project (G.A. No. 761727) and OTB-5G+ project (reference No. 16KIS0979K

    Should we consider Dupuytren's contracture as work-related? A review and meta-analysis of an old debate

    Get PDF
    International audienceABSTRACT: BACKGROUND: In view of the conflicting opinions published, a meta-analysis was undertaken on epidemiological studies in order to assess any association between Dupuytren's contracture and work exposure. METHODS: Using the key words: "occupational disease", "work" and "Dupuytren contracture" without limitation on language or year of publication, epidemiological studies were selected from four databases (Pub-Med, Embase, Web of science, BDSP) after two rounds (valid control group, valid work exposure). A quality assessment list was constructed and used to isolate papers with high quality methodological criteria (scores of 13 or above, HQMC). Relevant associations between manual work, vibration exposure (at work) and Dupuytren's contracture were extracted from the articles and a metarisk calculated using the generic variance approach (meta-odds ratios, meta-OR). RESULTS: From 1951 to 2007, 14 epidemiological studies (including 2 cohort studies, 3 case-control studies, and 9 cross-sectional studies/ population surveys) were included. Two different results could be extracted from five studies (based on different types of exposure), leading to 19 results, 12 for manual work (9 studies), and 7 for vibration exposure (5 studies). Six studies met the HQMC, yielding 9 results, 5 for manual work and 4 for vibration exposure. Five studies found a dose-response relationship. The meta-OR for manual work was 2.02[1.57;2.60] (HQMC studies only: 2.01[1.51;2.66]), and the meta-OR for vibration exposure was 2.88 [1.36;6.07] (HQMC studies only: 2.14[1.59;2.88]). CONCLUSION: These results support the hypothesis of an association between high levels of work exposure (manual work and vibration exposure) and Dupuytren's contracture in certain cases

    Biotargeted nanomedicines for cancer: six tenets before you begin

    Get PDF
    Biotargeted nanomedicines have captured the attention of academic and industrial scientists who have been motivated by the theoretical possibilities of the ‘magic bullet’ that was first conceptualized by Paul Ehrlich at the beginning of the 20th century. The Biotargeting Working Group, consisting of more than 50 pharmaceutical scientists, engineers, biologists and clinicians, has been formed as part of the National Cancer Institute’s Alliance for Nanotechnology in Cancer to harness collective wisdom in order to tackle conceptual and practical challenges in developing biotargeted nanomedicines for cancer. In modern science and medicine, it is impossible for any individual to be an expert in every aspect of biology, chemistry, materials science, pharmaceutics, toxicology, chemical engineering, imaging, physiology, oncology and regulatory affairs. Drawing on the expertise of leaders from each of these disciplines, this commentary highlights six tenets of biotargeted cancer nanomedicines in order to enable the translation of basic science into clinical practice

    Biogenic and Synthetic Polyamines Bind Cationic Dendrimers

    Get PDF
    Biogenic polyamines are essential for cell growth and differentiation, while polyamine analogues exert antitumor activity in multiple experimental model systems, including breast and lung cancer. Dendrimers are widely used for drug delivery in vitro and in vivo. We report the bindings of biogenic polyamines, spermine (spm), and spermidine (spmd), and their synthetic analogues, 3,7,11,15-tetrazaheptadecane.4HCl (BE-333) and 3,7,11,15,19-pentazahenicosane.5HCl (BE-3333) to dendrimers of different compositions, mPEG-PAMAM (G3), mPEG-PAMAM (G4) and PAMAM (G4). FTIR and UV-visible spectroscopic methods as well as molecular modeling were used to analyze polyamine binding mode, the binding constant and the effects of polyamine complexation on dendrimer stability and conformation. Structural analysis showed that polyamines bound dendrimers through both hydrophobic and hydrophilic contacts with overall binding constants of Kspm-mPEG-G3 = 7.6×104 M−1, Kspm-mPEG-PAMAM-G4 = 4.6×104 M−1, Kspm-PAMAM-G4 = 6.6×104 M−1, Kspmd-mPEG-G3 = 1.0×105 M−1, Kspmd-mPEG-PAMAM-G4 = 5.5×104 M−1, Kspmd-PAMAM-G4 = 9.2×104 M−1, KBE-333-mPEG-G3 = 4.2×104 M−1, KBe-333-mPEG-PAMAM-G4 = 3.2×104 M−1, KBE-333-PAMAM-G4 = 3.6×104 M−1, KBE-3333-mPEG-G3 = 2.2×104 M−1, KBe-3333-mPEG-PAMAM-G4 = 2.4×104 M−1, KBE-3333-PAMAM-G4 = 2.3×104 M−1. Biogenic polyamines showed stronger affinity toward dendrimers than those of synthetic polyamines, while weaker interaction was observed as polyamine cationic charges increased. The free binding energies calculated from docking studies were: −3.2 (spermine), −3.5 (spermidine) and −3.03 (BE-3333) kcal/mol, with the following order of binding affinity: spermidine-PAMAM-G-4>spermine-PAMMAM-G4>BE-3333-PAMAM-G4 consistent with spectroscopic data. Our results suggest that dendrimers can act as carrier vehicles for delivering antitumor polyamine analogues to target tissues

    In quest of a systematic framework for unifying and defining nanoscience

    Get PDF
    This article proposes a systematic framework for unifying and defining nanoscience based on historic first principles and step logic that led to a “central paradigm” (i.e., unifying framework) for traditional elemental/small-molecule chemistry. As such, a Nanomaterials classification roadmap is proposed, which divides all nanomatter into Category I: discrete, well-defined and Category II: statistical, undefined nanoparticles. We consider only Category I, well-defined nanoparticles which are >90% monodisperse as a function of Critical Nanoscale Design Parameters (CNDPs) defined according to: (a) size, (b) shape, (c) surface chemistry, (d) flexibility, and (e) elemental composition. Classified as either hard (H) (i.e., inorganic-based) or soft (S) (i.e., organic-based) categories, these nanoparticles were found to manifest pervasive atom mimicry features that included: (1) a dominance of zero-dimensional (0D) core–shell nanoarchitectures, (2) the ability to self-assemble or chemically bond as discrete, quantized nanounits, and (3) exhibited well-defined nanoscale valencies and stoichiometries reminiscent of atom-based elements. These discrete nanoparticle categories are referred to as hard or soft particle nanoelements. Many examples describing chemical bonding/assembly of these nanoelements have been reported in the literature. We refer to these hard:hard (H-n:H-n), soft:soft (S-n:S-n), or hard:soft (H-n:S-n) nanoelement combinations as nanocompounds. Due to their quantized features, many nanoelement and nanocompound categories are reported to exhibit well-defined nanoperiodic property patterns. These periodic property patterns are dependent on their quantized nanofeatures (CNDPs) and dramatically influence intrinsic physicochemical properties (i.e., melting points, reactivity/self-assembly, sterics, and nanoencapsulation), as well as important functional/performance properties (i.e., magnetic, photonic, electronic, and toxicologic properties). We propose this perspective as a modest first step toward more clearly defining synthetic nanochemistry as well as providing a systematic framework for unifying nanoscience. With further progress, one should anticipate the evolution of future nanoperiodic table(s) suitable for predicting important risk/benefit boundaries in the field of nanoscience

    Intramural hematome of the duodenum with anticoagulants, role of endoscopy

    No full text
    On rapporte une nouvelle observation d'hématome intramural du duodénum survenu sous anticoagulant. L'endoscopie a permis un diagnostic précoce. L'évolution a été très rapidement favorabl
    corecore