1,612 research outputs found

    Modulus and Damping of Soils Due to Cyclic Shear

    Get PDF

    Damping of Sands for Varying Saturation

    Full text link

    Acoustic Probing of the Jamming Transition in an Unconsolidated Granular Medium

    Get PDF
    Experiments with acoustic waves guided along the mechanically free surface of an unconsolidated granular packed structure provide information on the elasticity of granular media at very low pressures that are naturally controlled by the gravitational acceleration and the depth beneath the surface. Comparison of the determined dispersion relations for guided surface acoustic modes with a theoretical model reveals the dependencies of the elastic moduli of the granular medium on pressure. The experiments confirm recent theoretical predictions that relaxation of the disordered granular packing through non-affine motion leads to a peculiar scaling of shear rigidity with pressure near the jamming transition corresponding to zero pressure. Unexpectedly, and in disagreement with the most of the available theories, the bulk modulus depends on pressure in a very similar way to the shear modulus

    Prediction and interpretation of the performance of a deep excavation in Berlin sand

    Get PDF
    This paper describes the application of a generalized effective stress soil model, MIT‐S1, within a commercial finite element program, for simulating the performance of the support system for the 20m deep excavation of the M1 pit adjacent to the main station “Hauptbahnhof” in Berlin. The M1 pit was excavated underwater and supported by a perimeter diaphragm wall with a single row of prestressed anchors. Parameters for the soil model were based on an extensive program of laboratory tests on the local Berlin Sands. This calibration process highlights the practical difficulties in both measurements of critical state soil properties and in model parameter selection. The predictions of excavation performance are strongly affected by vertical profiles of two key state parameters, the initial earth pressure ratio, K0, and the in‐situ void ratio, e0. These are estimated from field dynamic penetration test data and geological history. The results show good agreement between computed and measured wall deflections and tie‐back forces for three instrumented sections. Much larger wall deflections were measured at a fourth section and may be due to spatial variability in sand properties that has not been considered in the current analyses. The results of this study highlight the importance of basic state parameter information for successful application of advanced soil models.National Science Foundation (U.S.) (Wester Europe program grant INT-0089508)German Academic Exchange Service (DAAD

    Observational Limits on Machos in the Galactic Halo

    Get PDF
    We present final results from the first phase of the EROS search for gravitational microlensing of stars in the Magellanic Clouds by unseen deflectors (machos: MAssive Compact Halo Objects). The search is sensitive to events with time scales between 15 minutes and 200 days corresponding to deflector masses in the range 1.e-7 to a few solar masses. Two events were observed that are compatible with microlensing by objects of mass of about 0.1 Mo. By comparing the results with the expected number of events for various models of the Galaxy, we conclude that machos in the mass range [1.e-7, 0.02] Mo make up less than 20% (95% C.L.) of the Halo dark matter.Comment: 4 pages, 3 Postscript figures, to be published in Astronomy & Astrophysic

    Observation of periodic variable stars towards the galactic spiral arms by EROS II

    Get PDF
    We present the results of a massive variability search based on a photometric survey of a six square degree region along the Galactic plane at (l=305l = 305^\circ, b=0.8b = -0.8^\circ) and (l=330l = 330^\circ, b=2.5b = -2.5^\circ). This survey was performed in the framework of the EROS II (Exp\'erience de Recherche d'Objets Sombres) microlensing program. The variable stars were found among 1,913,576 stars that were monitored between April and June 1998 in two passbands, with an average of 60 measurements. A new period-search technique is proposed which makes use of a statistical variable that characterizes the overall regularity of the flux versus phase diagram. This method is well suited when the photometric data are unevenly distributed in time, as is our case. 1,362 objects whose luminosity varies were selected. Among them we identified 9 Cepheids, 19 RR Lyrae, 34 Miras, 176 eclipsing binaries and 266 Semi-Regular stars. Most of them are newly identified objects. The cross-identification with known catalogues has been performed. The mean distance of the RR Lyrae is estimated to be 4.9±0.3\sim 4.9 \pm 0.3 kpc undergoing an average absorption of 3.4±0.2\sim 3.4 \pm 0.2 magnitudes. This distance is in good agreement with the one of disc stars which contribute to the microlensing source star population.Our catalogue and light curves are available electronically from the CDS, Strasbourg and from our Web site http://eros.in2p3.fr.Comment: 15 pages, 11 figures, accepted in A&A (april 2002
    corecore