719 research outputs found
Optical and near infrared observations of SN 1998bu
Infrared and optical spectra of SN 1998bu at an age of one year after
explosion are presented. The data show evidence for the radioactive decay of
56Co to 56Fe, long assumed to be the powering source for the supernova light
curve past maximum light. The spectra provide direct evidence for at least 0.4
solar masses of iron being present in the ejecta of the supernova. The fits to
the data also show that the widths of the emission lines increase with time.
Photometric measurements in the H-band show that the supernova is not fading
during the observation period. This is consistent with theoretical
expectations.Comment: accepted A&A, 7 pages, 9 figure
The Arabidopsis thaliana rlp mutations revert the ectopic leaf blade formation conferred by activation tagging of the LEP gene
Activation tagging of the gene LEAFY PETIOLE ( LEP) with a T-DNA construct induces ectopic leaf blade formation in Arabidopsis, which results in a leafy petiole phenotype. In addition, the number of rosette leaves produced prior to the onset of bolting is reduced, and the rate of leaf initiation is retarded by the activation tagged LEP gene. The ectopic leaf blade results from an invasion of the petiole region by the wild-type leaf blade. In order to isolate mutants that are specifically disturbed in the outgrowth of the leaf blade, second site mutagenesis was performed using ethane methanesulphonate (EMS) on a transgenic line that harbours the activation-tagged LEP gene and exhibits the leafy petiole phenotype. A collection of revertant for leafy petiole ( rlp) lines was isolated that form petiolated rosette leaves in the presence of the activated LEP gene, and could be classified into three groups. The class III rlp lines also display altered leaf development in a wild-type (non-transgenic) background, and are probably mutated in genes that affect shoot or leaf development. The rlp lines of classes I and II, which represent the majority of revertants, do not affect leaf blade outgrowth in a wild-type (non-transgenic) background. This indicates that LEP regulates a subset of the genes involved in the process of leaf blade outgrowth, and that genetic and/or functional redundancy in this process compensates for the loss of RLP function during the formation of the wild-type leaf blade. More detailed genetic and morphological analyses were performed on a selection of the rlp lines. Of these, the dominant rlp lines display complete reversion of (1) the leafy petiole phenotype, (2) the reduction in the number of rosette leaves and (3) the slower leaf initiation rate caused by the activation-tagged LEP gene. Therefore, these lines are potentially mutated in genes for interacting partners of LEP or in downstream regulatory genes. In contrast, the recessive rlp lines exhibit a specific reversion of the leafy petiole phenotype. Thus, these lines are most probably mutated in genes specific for the outgrowth of the leaf blade. Further functional analysis of the rlp mutations will contribute to the dissection of the complex pathways underlying leaf blade outgrowt
Monte Carlo transition probabilities
Transition probabilities governing the interaction of energy packets and
matter are derived that allow Monte Carlo NLTE transfer codes to be constructed
without simplifying the treatment of line formation. These probabilities are
such that the Monte Carlo calculation asymptotically recovers the local
emissivity of a gas in statistical equilibrium. Numerical experiments with
one-point statistical equilibrium problems for Fe II and Hydrogen confirm this
asymptotic behaviour. In addition, the resulting Monte Carlo emissivities are
shown to be far less sensitive to errors in the populations of the emitting
levels than are the values obtained with the basic emissivity formula.Comment: Improved text. Accepted for publication in A&
Silicates in D-type symbiotic stars: an ISO overview
We investigate the IR spectral features of a sample of D-type symbiotic
stars. Analyzing unexploited ISO-SWS data, deriving the basic observational
parameters of dust bands and comparing them with respect to those observed in
other astronomical sources, we try to highlight the effect of environment on
grain chemistry and physic. We find strong amorphous silicate emission bands at
10 micron and 18 micron in a large fraction of the sample. The analysis of the
10 micron band, along with a direct comparison with several astronomical
sources, reveals that silicate dust in symbiotic stars shows features between
the characteristic circumstellar environments and the interstellar medium. This
indicates an increasing reprocessing of grains in relation to specific
symbiotic behavior of the objects. A correlation between the central wavelength
of the 10 and 18 micron dust bands is found. By the modeling of IR spectral
lines we investigate also dust grains conditions within the shocked nebulae.
Both the unusual depletion values and the high sputtering efficiency might be
explained by the formation of SiO moleculae, which are known to be a very
reliable shock tracer. We conclude that the signature of dust chemical
disturbance due to symbiotic activity should be looked for in the outer,
circumbinary, expanding shells where the environmental conditions for grain
processing might be achieved. Symbiotic stars are thus attractive targets for
new mid-infrared and mm observations.Comment: 24 pages, 6 figures, 5 tables - to be published in A
Primordial helium recombination II: two-photon processes
Interpretation of precision measurements of the cosmic microwave background
(CMB) will require a detailed understanding of the recombination era, which
determines such quantities as the acoustic oscillation scale and the Silk
damping scale. This paper is the second in a series devoted to the subject of
helium recombination, with a focus on two-photon processes in He I. The
standard treatment of these processes includes only the spontaneous two-photon
decay from the 2^1S level. We extend this treatment by including five
additional effects, some of which have been suggested in recent papers but
whose impact on He I recombination has not been fully quantified. These are:
(i) stimulated two-photon decays; (ii) two-photon absorption of redshifted HeI
line radiation; (iii) two-photon decays from highly excited levels in HeI (n^1S
and n^1D, with n>=3); (iv) Raman scattering; and (v) the finite width of the
2^1P^o resonance. We find that effect (iii) is highly suppressed when one takes
into account destructive interference between different intermediate states
contributing to the two-photon decay amplitude. Overall, these effects are
found to be insignificant: they modify the recombination history at the level
of several parts in 10^4.Comment: 19 pages, 11 figures, to be submitted to PR
Star Formation in M51 Triggered by Galaxy Interaction
We have mapped the inner 360'' regions of M51 in the 158micron [CII] line at
55'' spatial resolution using the Far-infrared Imaging Fabry-Perot
Interferometer (FIFI) on the Kuiper Airborne Observatory (KAO). The emission is
peaked at the nucleus, but is detectable over the entire region mapped, which
covers much of the optical disk of the galaxy. There are also two strong
secondary peaks at ~43% to 70% of the nuclear value located roughly 120'' to
the north-east, and south-west of the nucleus. These secondary peaks are at the
same distance from the nucleus as the corotation radius of the density wave
pattern. The density wave also terminates at this location, and the outlying
spiral structure is attributed to material clumping due to the interaction
between M51 and NGC5195. This orbit crowding results in cloud-cloud collisions,
stimulating star formation, that we see as enhanced [CII] line emission. The
[CII] emission at the peaks originates mainly from photodissociation regions
(PDRs) formed on the surfaces of molecular clouds that are exposed to OB
starlight, so that these [CII] peaks trace star formation peaks in M51. The
total mass of [CII] emitting photodissociated gas is ~2.6x10^{8} M_{sun}, or
about 2% of the molecular gas as estimated from its CO(1-0) line emission. At
the peak [CII] positions, the PDR gas mass to total gas mass fraction is
somewhat higher, 3-17%, and at the secondary peaks the mass fraction of the
[CII] emitting photodissociated gas can be as high as 72% of the molecular
mass.... (continued)Comment: 14 pages, 6 figures, Accepted in ApJ (for higher resolution figures
contact the author
The Metallicity of the Redshift 4.16 Quasar BR2248-1242
We estimate the metallicity in the broad emission-line region of the redshift
z=4.16 quasar, BR2248-1242, by comparing line ratios involving nitrogen to
theoretical predictions. BR2248-1242 has unusually narrow emission lines with
large equivalent widths, thus providing a rare opportunity to measure several
line-ratio abundance diagnostics. The combined diagnostics indicate a
metallicity of ~2 times solar. This result suggests that an episode of vigorous
star formation occurred near BR2248-1242 prior to the observed z=4.16 epoch.
The time available for this enrichment episode is only ~1.5 Gyr at z=4.16 (for
H_{0}=65 km s^-1 Mpc^-1, Omega_{m}=0.3 and Omega_Lambda ~< 1). This evidence
for high metallicities and rapid star formation is consistent with the expected
early-epoch evolution of dense galactic nuclei.Comment: 8 pages, 3 figures. Prepared in AAStex. Submitted to the
Astrophysical Journal Revised version: added 1 referenc
Far-UV Emissions of the Sun in Time: Probing Solar Magnetic Activity and Effects on Evolution of Paleo-Planetary Atmospheres
We present and analyze FUSE observations of six solar analogs. These are
single, main-sequence G0-5 strs selected as proxies for the Sun at several
stages of its main-sequence lifetime. The emission features in the FUSE
920-1180 A wavelength range allow for a critical probe of the hot plasma over
three decades in temperature. Using the flux ratio CIII 1176/977 as
diagnostics, we investigate the dependence of the electron pressure of the
transition region as a function of the rotation period, age and magnetic
activity. The results from these solar proxies indicate that the electron
pressure of the stellar ~10^5-K plasma decreases by a factor of about 70
between the young, fast-rotating magnetically active star and the old,
slow-rotating inactive star. Also, the observations indicate that the average
surface fluxes of emission features strongly decrease with increasing stellar
age and longer rotation period. The emission flux evolution with age or
rotation period is well fitted by power laws, which become steeper from cooler
chromospheric (10^4 K) to hotter coronal (10^7 K) plasma. The relationship for
the integrated (920-1180 A) FUSE flux indicates that the solar far-ultraviolet
emissions were about twice the present value 2.5 Gyr ago and about 4 times the
present value 3.5 Gyr ago. Note also that the FUSE/FUV flux of the Zero-Age
Main Sequence Sun could have been higher by as much as 50 times. Our analysis
suggests that the strong FUV emissions of the young Sun may have played a
crucial role in the developing planetary system, in particular through the
photoionization, photochemical evolution and possible erosion of the planetary
atmospheres. (abridged)Comment: 15 pages, 8 figures, accepted for publication in Ap
The Effects of Dark Matter Decay and Annihilation on the High-Redshift 21 cm Background
The radiation background produced by the 21 cm spin-flip transition of
neutral hydrogen at high redshifts can be a pristine probe of fundamental
physics and cosmology. At z~30-300, the intergalactic medium (IGM) is visible
in 21 cm absorption against the cosmic microwave background (CMB), with a
strength that depends on the thermal (and ionization) history of the IGM. Here
we examine the constraints this background can place on dark matter decay and
annihilation, which could heat and ionize the IGM through the production of
high-energy particles. Using a simple model for dark matter decay, we show
that, if the decay energy is immediately injected into the IGM, the 21 cm
background can detect energy injection rates >10^{-24} eV cm^{-3} sec^{-1}. If
all the dark matter is subject to decay, this allows us to constrain dark
matter lifetimes <10^{27} sec. Such energy injection rates are much smaller
than those typically probed by the CMB power spectra. The expected brightness
temperature fluctuations at z~50 are a fraction of a mK and can vary from the
standard calculation by up to an order of magnitude, although the difference
can be significantly smaller if some of the decay products free stream to lower
redshifts. For self-annihilating dark matter, the fluctuation amplitude can
differ by a factor <2 from the standard calculation at z~50. Note also that, in
contrast to the CMB, the 21 cm probe is sensitive to both the ionization
fraction and the IGM temperature, in principle allowing better constraints on
the decay process and heating history. We also show that strong IGM heating and
ionization can lead to an enhanced H_2 abundance, which may affect the earliest
generations of stars and galaxies.Comment: submitted to Phys Rev D, 14 pages, 8 figure
Dust in the Ionized Medium of the Galaxy: GHRS Measurements of Al III and S III
We present interstellar absorption line measurements of the ions S III and Al
III towards six stars using archival Goddard High Resolution Spectrograph data.
The ions Al III and S III trace heavily depleted and non-depleted elements,
respectively, in ionized gas. We use the photoionization code CLOUDY to derive
the ionization correction relating N(Al III)/N(S III) to the gas-phase
abundance [Al/S]_i in the ionized gas. For spectral types considered here, the
corrections are small and independent of the assumed ionization parameter.
Using the results of these photoionization models, we find [Al/S]_i = -1.0 in
the ionized gas towards three disk stars. These values of [Al/S]_i (=[Al/H]_i)
imply that Al-bearing grains are present in the ionized nebulae around these
stars. If the WIM of the Galaxy is photoionized by OB stars, our data for two
halo stars imply [Al/S]_i = -0.4 to -0.5 in the WIM and thus the presence of
dust grains containing Al in this important phase of the ISM. While
photoionization appears to be the most likely origin of the ionization for Al
III and S III, we cannot rule out confusion from the presence of hot,
collisionally ionized gas along two sightlines. We find that [Al/S]_i in the
ionized gas along the six sightlines is anti-correlated with the electron
density and average sightline neutral density. The degree of grain destruction
in the ionized medium of the Galaxy is not much higher than in the warm neutral
medium. The existence of grains in the ionized regions studied here has
important implications for the thermal balance of these regions. (Abstract
Abridged)Comment: 30 pages including 8 embedded tables and 8 embedded figures. Accepted
for publication in the Astrophysical Journa
- …
