769 research outputs found
Single vortex fluctuations in a superconducting chip as generating dephasing and spin flips in cold atom traps
We study trapping of a cold atom by a single vortex line in an extreme type
II superconducting chip, allowing for pinning and friction. We evaluate the
atom's spin flip rate and its dephasing due to the vortex fluctuations in
equilibrium and find that they decay rapidly when the distance to the vortex
exceeds the magnetic penetration length. We find that there are special spin
orientations, depending on the spin location relative to the vortex, at which
spin dephasing is considerably reduced while perpendicular directions have a
reduced spin flip rate. We also show that the vortex must be perpendicular to
the surface for a general shape vortex.Comment: 6 pages, 4 figure
Trapping of ultra-cold atoms with the magnetic field of vortices in a thin film superconducting micro-structure
We store and control ultra-cold atoms in a new type of trap using magnetic
fields of vortices in a high temperature superconducting micro-structure. This
is the first time ultra-cold atoms have been trapped in the field of magnetic
flux quanta. We generate the attractive trapping potential for the atoms by
combining the magnetic field of a superconductor in the remanent state with
external homogeneous magnetic fields. We show the control of crucial atom trap
characteristics such as an efficient intrinsic loading mechanism, spatial
positioning of the trapped atoms and the vortex density in the superconductor.
The measured trap characteristics are in good agreement with our numerical
simulations.Comment: 4pages, comments are welcom
Comparison of Simulator Wear Measured by Gravimetric vs Optical Surface Methods for Two Million Cycles
Understanding wear mechanisms are key for better implants
Critical to the success of the simulation
Small amount of metal wear can have catastrophic effects in the patient such as heavy metal poisoning or deterioration of the bone/implant interface leading to implant failure
Difficult to measure in heavy hard-on-hard implants (metal-on-metal or ceramic-on-ceramic)
May have only fractions of a milligram of wear on a 200 g component
At the limit of detection of even high-end balances when the component is 200 g and the change in weight is on the order of 0.000 1 grams
Here we compare the standard gravimetric wear estimate with
A non-contact 3D optical profiling method at each weighing stop
A coordinate measuring machine (CMM) at the beginning and end of the ru
A calcium ion in a cavity as a controlled single-photon source
We present a single calcium ion, coupled to a high-finesse cavity, as an almost ideal system for the controlled generation of single photons. Photons from a pump beam are Raman-scattered by the ion into the cavity mode, which subsequently emits the photon into a well-defined output channel. In contrast with comparable atomic systems, the ion is localized at a fixed position in the cavity mode for indefinite times, enabling truly continuous operation of the device. We have performed numeric calculations to assess the performance of the system and present the first experimental indication of single-photon emission in our set-up
Exchange Field Induced Magnetoresistance in Colossal Magnetoresistance Manganites
The effect of an exchange field on electrical transport in thin films of
metallic ferromagnetic manganites has been investigated. The exchange field was
induced both by direct exchange coupling in a ferromagnet/antiferromagnet
multilayer and by indirect exchange interaction in a ferromagnet/paramagnet
superlattice. The electrical resistance of the manganite layers was found to be
determined by the absolute value of the vector sum of the effective exchange
field and the external magnetic field.Comment: 5 pages, 4 figure
Half-metallic antiferromagnets in thiospinels
We have theoretically designed the half-metallic (HM) antiferromagnets (AFMs)
in thiospinel systems, and , based on the electronic structure
studies in the local-spin-density approximation (LSDA). We have also explored
electronic and magnetic properties of parent spinel compounds of the above
systems; and are found to be HM
ferromagnets in their cubic spinel structures, while is a
ferrimagnetic insulator. We have discussed the feasibility of material
synthesis of HM-AFM thiospinel systems.Comment: 4 pages, 5 figure
Minimum decoherence cat-like states in Gaussian noisy channels
We address the evolution of cat-like states in general Gaussian noisy
channels, by considering superpositions of coherent and squeezed-coherent
states coupled to an arbitrarily squeezed bath. The phase space dynamics is
solved and decoherence is studied keeping track of the purity of the evolving
state. The influence of the choice of the state and channel parameters on
purity is discussed and optimal working regimes that minimize the decoherence
rate are determined. In particular, we show that squeezing the bath to protect
a non squeezed cat state against decoherence is equivalent to orthogonally
squeezing the initial cat state while letting the bath be phase insensitive.Comment: 10 pages, 2 figures, references added, submitted to J. Opt.
Testing sequential quantum measurements: how can maximal knowledge be extracted?
The extraction of information from a quantum system unavoidably implies a
modification of the measured system itself. It has been demonstrated recently
that partial measurements can be carried out in order to extract only a portion
of the information encoded in a quantum system, at the cost of inducing a
limited amount of disturbance. Here we analyze experimentally the dynamics of
sequential partial measurements carried out on a quantum system, focusing on
the trade-off between the maximal information extractable and the disturbance.
In particular we consider two different regimes of measurement, demonstrating
that, by exploiting an adaptive strategy, an optimal trade-off between the two
quantities can be found, as observed in a single measurement process. Such
experimental result, achieved for two sequential measurements, can be extended
to N measurement processes.Comment: 5 pages, 3 figure
Inhomogeneous isospin distribution in the reactions of 28Si + 112Sn and 124Sn at 30 and 50 MeV/nucleon
We have created quasiprojectiles of varying isospin via peripheral reactions
of 28Si + 112Sn and 124Sn at 30 and 50 MeV/nucleon. The quasiprojectiles have
been reconstructed from completely isotopically identified fragments. The
difference in N/Z of the reconstructed quasiprojectiles allows the
investigation of the disassembly as a function of the isospin of the
fragmenting system. The isobaric yield ratio 3H/3He depends strongly on N/Z
ratio of quasiprojectiles. The dependences of mean fragment multiplicity and
mean N/Z ratio of the fragments on N/Z ratio of the quasiprojectile are
different for light charged particles and intermediate mass fragments.
Observation of a different N/Z ratio of light charged particles and
intermediate mass fragments is consistent with an inhomogeneous distribution of
isospin in the fragmenting system.Comment: 5 pages, 4 Postscript figures, RevTe
- …
