818 research outputs found
Wavefunction extended Lagrangian Born-Oppenheimer molecular dynamics
Extended Lagrangian Born-Oppenheimer molecular dynamics [Niklasson, Phys.
Rev. Lett. 100 123004 (2008)] has been generalized to the propagation of the
electronic wavefunctions. The technique allows highly efficient first
principles molecular dynamics simulations using plane wave pseudopotential
electronic structure methods that are stable and energy conserving also under
incomplete and approximate self-consistency convergence. An implementation of
the method within the planewave basis set is presented and the accuracy and
efficiency is demonstrated both for semi-conductor and metallic materials.Comment: 6 pages, 3 figure
Resistance noise at the metal-insulator transition in thermochromic VO2 films
Thermochromic VO2 films were prepared by reactive DC magnetron sputtering
onto heated sapphire substrates and were used to make 100-nm-thick samples that
were 10 {\mu}m wide and 100 micron long. The resistance of these samples
changed by a factor of about 2000 in the 50 < Ts < 70 C range of temperature Ts
around the "critical" temperature Tc between a low-temperature semiconducting
phase and a high-temperature metallic-like phase of VO2. Power density spectra
S(f) were extracted for resistance noise around Tc and demonstrated unambiguous
1/f behavior. Data on S(10Hz)/Rs^2 scaled as Rs^x, where Rs is sample
resistance; the noise exponent x was -2.6 for Ts Tc.
These exponents can be reconciled with the Pennetta-Trefan-Reggiani theory [C.
Pennetta, G. Trefanan, and L. Reggiani, Phys. Rev. Lett. 85, 5238 (2000)] for
lattice percolation with switching disorder ensuing from random defect
generation and healing in steady state. Our work hence highlights the dynamic
features of the percolating semiconducting and metallic-like regions around Tc
in thermochromic VO2 films.Comment: submitted for publication, this topic is condensed matter physic
A Spatial Analysis of Rift Valley Fever Virus Seropositivity in Domestic Ruminants in Tanzania
Rift Valley fever (RVF) is an acute arthropod-borne viral zoonotic disease primarily occurring in Africa. Since RVF-like disease was reported in Tanzania in 1930, outbreaks of the disease have been reported mainly from the eastern ecosystem of the Great Rift Valley. This cross-sectional study was carried out to describe the variation in RVF virus (RVFV) seropositivity in domestic ruminants between selected villages in the eastern and western Rift Valley ecosystems in Tanzania, and identify potential risk factors. Three study villages were purposively selected from each of the two Rift Valley ecosystems. Serum samples from randomly selected domestic ruminants (n = 1,435) were tested for the presence of specific immunoglobulin G (IgG) and M (IgM), using RVF enzyme-linked immunosorbent assay methods. Mixed effects logistic regression modelling was used to investigate the association between potential risk factors and RVFV seropositivity. The overall RVFV seroprevalence (n = 1,435) in domestic ruminants was 25.8% and species specific seroprevalence was 29.7%, 27.7% and 22.0% in sheep (n = 148), cattle (n = 756) and goats (n = 531), respectively. The odds of seropositivity were significantly higher in animals sampled from the villages in the eastern than those in the western Rift Valley ecosystem (OR = 1.88, CI: 1.41, 2.51; p<0.001), in animals sampled from villages with soils of good than those with soils of poor water holding capacity (OR = 1.97; 95% CI: 1.58, 3.02; p< 0.001), and in animals which had been introduced than in animals born within the herd (OR = 5.08, CI: 2.74, 9.44; p< 0.001). Compared with animals aged 1-2 years, those aged 3 and 4-5 years had 3.40 (CI: 2.49, 4.64; p< 0.001) and 3.31 (CI: 2.27, 4.82, p< 0.001) times the odds of seropositivity. The findings confirm exposure to RVFV in all the study villages, but with a higher prevalence in the study villages from the eastern Rift Valley ecosystem
Correlation effects and the high-frequency spin susceptibility of an electron liquid: Exact limits
Spin correlations in an interacting electron liquid are studied in the
high-frequency limit and in both two and three dimensions. The third-moment sum
rule is evaluated and used to derive exact limiting forms (at both long- and
short-wavelengths) for the spin-antisymmetric local-field factor, . In two dimensions is found to diverge as at long wavelengths,
and the spin-antisymmetric exchange-correlation kernel of time-dependent spin
density functional theory diverges as in both two and three dimensions.
These signal a failure of the local-density approximation, one that can be
redressed by alternative approaches.Comment: 5 page
Molecular-orbital-free algorithm for excited states in time-dependent perturbation theory
A non-linear conjugate gradient optimization scheme is used to obtain
excitation energies within the Random Phase Approximation (RPA). The solutions
to the RPA eigenvalue equation are located through a variational
characterization using a modified Thouless functional, which is based upon an
asymmetric Rayleigh quotient, in an orthogonalized atomic orbital
representation. In this way, the computational bottleneck of calculating
molecular orbitals is avoided. The variational space is reduced to the
physically-relevant transitions by projections. The feasibility of an RPA
implementation scaling linearly with system size, N, is investigated by
monitoring convergence behavior with respect to the quality of initial guess
and sensitivity to noise under thresholding, both for well- and ill-conditioned
problems. The molecular- orbital-free algorithm is found to be robust and
computationally efficient providing a first step toward a large-scale, reduced
complexity calculation of time-dependent optical properties and linear
response. The algorithm is extensible to other forms of time-dependent
perturbation theory including, but not limited to, time-dependent Density
Functional theory.Comment: 9 pages, 7 figure
Optomagnetic composite medium with conducting nanoelements
A new type of metal-dielectric composites has been proposed that is
characterised by a resonance-like behaviour of the effective permeability in
the infrared and visible spectral ranges. This material can be referred to as
optomagnetic medium. The analytical formalism developed is based on solving the
scattering problem for considered inclusions with impedance boundary condition,
which yields the current and charge distributions within the inclusions. The
presence of the effective magnetic permeability and its resonant properties
lead to novel optical effects and open new possible applications.Comment: 48 pages, 13 figures. accepted to Phys. Rev. B; to appear vol. 66,
200
Effective one-dimensionality of AC hopping conduction in the extreme disorder limit
It is argued that in the limit of extreme disorder AC hopping is dominated by
"percolation paths". Modelling a percolation path as a one-dimensional path
with a sharp jump rate cut-off leads to an expression for the universal AC
conductivity, that fits computer simulations in two and three dimensions better
than the effective medium approximation.Comment: 6 postscript figure
- …
