1,056 research outputs found
Empirical constraints on the origin of fast radio bursts: volumetric rates and host galaxy demographics as a test of millisecond magnetar connection
The localization of the repeating FRB 121102 to a low-metallicity dwarf
galaxy at , and its association with a quiescent radio source,
suggests the possibility that FRBs originate from magnetars, formed by the
unusual supernovae in such galaxies. We investigate this via a comparison of
magnetar birth rates, the FRB volumetric rate, and host galaxy demographics. We
calculate average volumetric rates of possible millisecond magnetar production
channels such as superluminous supernovae (SLSNe), long and short gamma-ray
bursts (GRBs), and general magnetar production via core-collapse supernovae.
For each channel we also explore the expected host galaxy demographics using
their known properties. We determine for the first time the number density of
FRB emitters (the product of their volumetric birthrate and lifetime), Gpc, assuming that FRBs are predominantly emitted
from repetitive sources similar to FRB 121102 and adopting a beaming factor of
0.1. By comparing rates we find that production via rare channels (SLSNe, GRBs)
implies a typical FRB lifetime of 30-300 yr, in good agreement with
other lines of argument. The total energy emitted over this time is consistent
with the available energy stored in the magnetic field. On the other hand, any
relation to magnetars produced via normal core-collapse supernovae leads to a
very short lifetime of 0.5yr, in conflict with both theory and
observation. We demonstrate that due to the diverse host galaxy distributions
of the different progenitor channels, many possible sources of FRB birth can be
ruled out with host galaxy identifications. Conversely, targeted
searches of galaxies that have previously hosted decades-old SLSNe and GRBs may
be a fruitful strategy for discovering new FRBs and related quiescent radio
sources, and determining the nature of their progenitors
An ultraviolet excess in the superluminous supernova Gaia16apd reveals a powerful central engine
Since the discovery of superluminous supernovae (SLSNe) in the last decade,
it has been known that these events exhibit bluer spectral energy distributions
than other supernova subtypes, with significant output in the ultraviolet.
However, the event Gaia16apd seems to outshine even the other SLSNe at
rest-frame wavelengths below \AA. Yan et al (2016) have recently
presented HST UV spectra and attributed the UV flux to low metallicity and
hence reduced line blanketing. Here we present UV and optical light curves over
a longer baseline in time, revealing a rapid decline at UV wavelengths despite
a typical optical evolution. Combining the published UV spectra with our own
optical data, we demonstrate that Gaia16apd has a much hotter continuum than
virtually any SLSN at maximum light, but it cools rapidly thereafter and is
indistinguishable from the others by -15 days after peak. Comparing
the equivalent widths of UV absorption lines with those of other events, we
show that the excess UV continuum is a result of a more powerful central power
source, rather than a lack of UV absorption relative to other SLSNe or an
additional component from interaction with the surrounding medium. These
findings strongly support the central-engine hypothesis for hydrogen-poor
SLSNe. An explosion ejecting M, where
is the opacity in cmg, and forming a magnetar with spin
period ms, and G (lower than other SLSNe with
comparable rise-times) can consistently explain the light curve evolution and
high temperature at peak. The host metallicity, Z, is
comparable to other SLSNe.Comment: Updated to match accepted version (ApJL
Cognitive function and lifetime features of depression and bipolar disorder in a large population sample: Cross-sectional study of 143,828 UK Biobank participants
Background: This study investigated differences in cognitive performance between middle-aged adults with and without a lifetime history of mood disorder features, adjusting for a range of potential confounders.
Methods: Cross-sectional analysis of baseline data from the UK Biobank cohort. Adults aged 40–69 (n = 143,828) were assessed using measures of reasoning, reaction time and memory. Self-reported data on lifetime features of major depression and bipolar disorder were used to construct groups for comparison against controls. Regression models examined the association between mood disorder classification and cognitive performance, adjusting for sociodemographic, lifestyle and clinical confounders.
Results: Inverse associations between lifetime history of bipolar or severe recurrent depression features and cognitive performance were attenuated or reversed after adjusting for confounders, including psychotropic medication use and current depressive symptoms. Participants with a lifetime history of single episode or moderate recurrent depression features outperformed controls to a small (but statistically significant) degree, independent of adjustment for confounders. There was a significant interaction between use of psychotropic medication and lifetime mood disorder features, with reduced cognitive performance observed in participants taking psychotropic medication.
Conclusions: In this general population sample of adults in middle age, lifetime features of recurrent depression or bipolar disorder were only associated with cognitive impairment within unadjusted analyses. These findings underscore the importance of adjusting for potential confounders when investigating mood disorder-related cognitive function
The Binary Neutron Star event LIGO/VIRGO GW170817 a hundred and sixty days after merger: synchrotron emission across the electromagnetic spectrum
We report deep Chandra, HST and VLA observations of the binary neutron star
event GW170817 at d after merger. These observations show that GW170817
has been steadily brightening with time and might have now reached its peak,
and constrain the emission process as non-thermal synchrotron emission where
the cooling frequency is above the X-ray band and the synchrotron
frequency is below the radio band. The very simple power-law spectrum
extending for eight orders of magnitude in frequency enables the most precise
measurement of the index of the distribution of non-thermal relativistic
electrons accelerated by a shock launched by a
NS-NS merger to date. We find , which indicates that radiation
from ejecta with dominates the observed emission. While
constraining the nature of the emission process, these observations do
\emph{not} constrain the nature of the relativistic ejecta. We employ
simulations of explosive outflows launched in NS ejecta clouds to show that the
spectral and temporal evolution of the non-thermal emission from GW170817 is
consistent with both emission from radially stratified quasi-spherical ejecta
traveling at mildly relativistic speeds, \emph{and} emission from off-axis
collimated ejecta characterized by a narrow cone of ultra-relativistic material
with slower wings extending to larger angles. In the latter scenario, GW170817
harbored a normal SGRB directed away from our line of sight. Observations at
days are unlikely to settle the debate as in both scenarios the
observed emission is effectively dominated by radiation from mildly
relativistic material.Comment: Updated with the latest VLA and Chandra dat
A Decline in the X-ray through Radio Emission from GW170817 Continues to Support an Off-Axis Structured Jet
We present new observations of the binary neutron star merger GW170817 at
days post-merger, at radio (Karl G. Jansky Very Large
Array; VLA), X-ray (Chandra X-ray Observatory) and optical (Hubble Space
Telescope; HST) wavelengths. These observations provide the first evidence for
a turnover in the X-ray light curve, mirroring a decline in the radio emission
at significance. The radio-to-X-ray spectral energy
distribution exhibits no evolution into the declining phase. Our full
multi-wavelength dataset is consistent with the predicted behavior of our
previously published models of a successful structured jet expanding into a
low-density circumbinary medium, but pure cocoon models with a choked jet
cannot be ruled out. If future observations continue to track our predictions,
we expect that the radio and X-ray emission will remain detectable until days post-merger.Comment: Accepted to ApJL. Updated version includes new VLA observations
extending through 2018 June
A systematic review of naturalistic interventions in refugee populations
Naturalistic interventions with refugee populations examine outcomes following mental health interventions in existing refugee service organisations. The current review aimed to examine outcomes of naturalistic interventions and quality of the naturalistic intervention literature in refugee populations with the view to highlight the strengths and limitations of naturalistic intervention studies. Database search was conducted using the search terms ‘refugee’, ‘asylum seeker’, ‘treatment’, ‘therapy’ and ‘intervention. No date limitations were applied, but searches were limited to articles written in English. Seven studies were identified that assessed the outcome of naturalistic interventions on adult refugees or asylum seekers in a country of resettlement using quantitative outcome measures. Results showed significant variation in the outcomes of naturalistic intervention studies, with a trend towards showing decreased symptomatology at post-intervention. However, conclusions are limited by methodological problems of the studies reviewed, particularly poor documentation of intervention methods and lack of control in the design of naturalistic intervention studies. Further examination of outcomes following naturalistic interventions is needed with studies which focus on increasing the rigour of the outcome assessment process
The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/VIRGO GW170817. VI. Radio Constraints on a Relativistic Jet and Predictions for Late-Time Emission from the Kilonova Ejecta
We present Very Large Array (VLA) and Atacama Large Millimeter/sub-millimeter
Array ALMA radio observations of GW\,170817, the first Laser Interferometer
Gravitational-wave Observatory (LIGO)/Virgo gravitational wave (GW) event from
a binary neutron star merger and the first GW event with an electromagnetic
(EM) counterpart. Our data include the first observations following the
discovery of the optical transient at both the centimeter ( hours post
merger) and millimeter ( days post merger) bands. We detect faint
emission at 6 GHz at 19.47 and 39.23 days after the merger, but not in an
earlier observation at 2.46 d. We do not detect cm/mm emission at the position
of the optical counterpart at frequencies of 10-97.5 GHz at times ranging from
0.6 to 30 days post merger, ruling out an on-axis short gamma-ray burst (SGRB)
for energies erg. For fiducial SGRB parameters, our limits
require an observer viewer angle of . The radio and X-ray
data can be jointly explained as the afterglow emission from an SGRB with a jet
energy of erg that exploded in a uniform density
environment with cm, viewed at an angle of from the jet axis. Using the results of our light curve
and spectral modeling, in conjunction with the inference of the circumbinary
density, we predict the emergence of late-time radio emission from the
deceleration of the kilonova (KN) ejecta on a timescale of years
that will remain detectable for decades with next-generation radio facilities,
making GW\,170817 a compelling target for long-term radio monitoring.Comment: 8 pages, 4 figures, 1 table. ApJL, in press. Keywords: GW170817, LV
The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/VIRGO GW170817. VII. Properties of the Host Galaxy and Constraints on the Merger Timescale
We present the properties of NGC 4993, the host galaxy of GW170817, the first
gravitational wave (GW) event from the merger of a binary neutron star (BNS)
system and the first with an electromagnetic (EM) counterpart. We use both
archival photometry and new optical/near-IR imaging and spectroscopy, together
with stellar population synthesis models to infer the global properties of the
host galaxy. We infer a star formation history peaked at Gyr ago,
with subsequent exponential decline leading to a low current star formation
rate of 0.01 M yr, which we convert into a binary merger
timescale probability distribution. We find a median merger timescale of
Gyr, with a 90% confidence range of Gyr. This
in turn indicates an initial binary separation of R,
comparable to the inferred values for Galactic BNS systems. We also use new and
archival images to measure a projected offset of
the optical counterpart of kpc (0.64) from the center of NGC 4993
and to place a limit of mag on any pre-existing emission,
which rules out the brighter half of the globular cluster luminosity function.
Finally, the age and offset of the system indicates it experienced a modest
natal kick with an upper limit of km s. Future GWEM
observations of BNS mergers will enable measurement of their population delay
time distribution, which will directly inform their viability as the dominant
source of -process enrichment in the Universe.Comment: 9 Pages, 3 Figures, 2 Tables, ApJL, In Press. Keywords: GW170817, LV
Spitzer Space Telescope Infrared Observations of the Binary Neutron Star Merger GW170817
We present Spitzer Space Telescope 3.6 and 4.5 micron observations of the
binary neutron star merger GW170817 at 43, 74, and 264 days post-merger. Using
the final observation as a template, we uncover a source at the position of
GW170817 at 4.5 micron with a brightness of 22.9+/-0.3 AB mag at 43 days and
23.8+/-0.3 AB mag at 74 days (the uncertainty is dominated by systematics from
the image subtraction); no obvious source is detected at 3.6 micron to a
3-sigma limit of >23.3 AB mag in both epochs. The measured brightness is dimmer
by a factor of about 2-3 times compared to our previously published kilonova
model, which is based on UV, optical, and near-IR data at <30 days. However,
the observed fading rate and color (m_{3.6}-m_{4.5}> 0 AB mag) are consistent
with our model. We suggest that the discrepancy is likely due to a transition
to the nebular phase, or a reduced thermalization efficiency at such late time.
Using the Spitzer data as a guide, we briefly discuss the prospects of
observing future binary neutron star mergers with Spitzer (in LIGO/Virgo
Observing Run 3) and the James Webb Space Telescope (in LIGO/Virgo Observing
Run 4 and beyond).Comment: 6 pages, 2 figures, submitted to ApJ
- …
