271 research outputs found

    Agreement Between Magnetic Resonance Imaging Proton Density Fat Fraction Measurements and Pathologist-assigned Steatosis Grades of Liver Biopsies from Adults with Nonalcoholic Steatohepatitis

    Get PDF
    Background & Aims We assessed the diagnostic performance of magnetic resonance imaging (MRI) proton density fat fraction (PDFF) in grading hepatic steatosis and change in hepatic steatosis in adults with nonalcoholic steatohepatitis (NASH) in a multi-center study, using central histology as reference. Methods We collected data from 113 adults with NASH participating in a multi-center, randomized, double-masked, placebo-controlled, phase 2b trial to compare the efficacy cross-sectionally and longitudinally of obeticholic acid vs placebo. Hepatic steatosis was assessed at baseline and after 72 weeks of obeticholic acid or placebo by liver biopsy and MRI (scanners from different manufacturers, at 1.5T or 3T). We compared steatosis estimates by PDFF vs histology. Histologic steatosis grade was scored in consensus by a pathology committee. Cross-validated receiver operating characteristic (ROC) analyses were performed. Results At baseline, 34% of subjects had steatosis grade 0 or 1, 39% had steatosis grade 2, and 27% had steatosis grade 3; corresponding mean PDFF values were 9.8%±3.7%, 18.1%±4.3%, and 30.1%±8.1%. PDFF classified steatosis grade 0–1 vs 2–3 with an area under the ROC curve (AUROC) of 0.95 (95% CI, 0.91–0.98), and grade 0–2 vs grade 3 steatosis with an AUROC of 0.96 (95% CI, 0.93–0.99). PDFF cut-off values at 90% specificity were 16.3% for grades 2–3 and 21.7% for grade 3, with corresponding sensitivities of 83% and 84%. After 72 weeks' of obeticholic vs placebo, 42% of subjects had a reduced steatosis grade (mean reduction in PDFF from baseline of 7.4%±8.7%), 49% had no change in steatosis grade (mean increase in PDFF from baseline of 0.3%±6.3%), and 9% had an increased steatosis grade (mean increase in PDFF from baseline of 7.7%±6.0%). PDFF change identified subjects with reduced steatosis grade with an AUROC of 0.81 (95% CI, 0.71–0.91) and increased steatosis grade with an AUROC of 0.81 (95% CI, 0.63–0.99). A PDFF reduction of 5.15% identified subjects with reduced steatosis grade with 90% specificity and 58% sensitivity, whereas a PDFF increase of 5.6% identified those with increased steatosis grade with 90% specificity and 57% sensitivity. Conclusions Based on data from a phase 2 randomized controlled trial of adults with NASH, PDFF estimated by MRI scanners of different field strength and at different sites, accurately classifies grades and changes in hepatic steatosis when histologic analysis of biopsies is used as a reference

    Bioinformatics-Driven Identification and Examination of Candidate Genes for Non-Alcoholic Fatty Liver Disease

    Get PDF
    ObjectiveCandidate genes for non-alcoholic fatty liver disease (NAFLD) identified by a bioinformatics approach were examined for variant associations to quantitative traits of NAFLD-related phenotypes.Research Design and MethodsBy integrating public database text mining, trans-organism protein-protein interaction transferal, and information on liver protein expression a protein-protein interaction network was constructed and from this a smaller isolated interactome was identified. Five genes from this interactome were selected for genetic analysis. Twenty-one tag single-nucleotide polymorphisms (SNPs) which captured all common variation in these genes were genotyped in 10,196 Danes, and analyzed for association with NAFLD-related quantitative traits, type 2 diabetes (T2D), central obesity, and WHO-defined metabolic syndrome (MetS).Results273 genes were included in the protein-protein interaction analysis and EHHADH, ECHS1, HADHA, HADHB, and ACADL were selected for further examination. A total of 10 nominal statistical significant associations (P<0.05) to quantitative metabolic traits were identified. Also, the case-control study showed associations between variation in the five genes and T2D, central obesity, and MetS, respectively. Bonferroni adjustments for multiple testing negated all associations.ConclusionsUsing a bioinformatics approach we identified five candidate genes for NAFLD. However, we failed to provide evidence of associations with major effects between SNPs in these five genes and NAFLD-related quantitative traits, T2D, central obesity, and MetS

    The pediatric NAFLD fibrosis index: a predictor of liver fibrosis in children with non-alcoholic fatty liver disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Liver fibrosis is a stage of non-alcoholic fatty liver disease (NAFLD) which is responsible for liver-related morbidity and mortality in adults. Accordingly, the search for non-invasive markers of liver fibrosis has been the subject of intensive efforts in adults with NAFLD. Here, we developed a simple algorithm for the prediction of liver fibrosis in children with NAFLD followed at a tertiary care center.</p> <p>Methods</p> <p>The study included 136 male and 67 female children with NAFLD aged 3.3 to 18.0 years; 141 (69%) of them had fibrosis at liver biopsy. On the basis of biological plausibility, readily availability and evidence from adult studies, we evaluated the following potential predictors of liver fibrosis at bootstrapped stepwise logistic regression: gender, age, body mass index, waist circumference, alanine transaminase, aspartate transaminase, gamma-glutamyl-transferase, albumin, prothrombin time, glucose, insulin, triglycerides and cholesterol. A final model was developed using bootstrapped logistic regression with bias-correction. We used this model to develop the 'pediatric NAFLD fibrosis index' (PNFI), which varies between 0 and 10.</p> <p>Results</p> <p>The final model was based on age, waist circumference and triglycerides and had a area under the receiver operating characteristic curve of 0.85 (95% bootstrapped confidence interval (CI) with bias correction 0.80 to 0.90) for the prediction of liver fibrosis. A PNFI ≥ 9 (positive likelihood ratio = 28.6, 95% CI 4.0 to 201.0; positive predictive value = 98.5, 95% CI 91.8 to 100.0) could be used to rule in liver fibrosis without performing liver biopsy.</p> <p>Conclusion</p> <p>PNFI may help clinicians to predict liver fibrosis in children with NAFLD, but external validation is needed before it can be employed for this purpose.</p

    Activation of Peroxisome Proliferator-Activated Receptor Gamma by Rosiglitazone Increases Sirt6 Expression and Ameliorates Hepatic Steatosis in Rats

    Get PDF
    Sirt6 has been implicated in the regulation of hepatic lipid metabolism and the development of hepatic steatosis. The aim of this study was to address the potential role of Sirt6 in the protective effects of rosiglitazone (RGZ) on hepatic steatosis.) by stomach gavage for 6 weeks. The involvement of Sirt6 in the RGZ's regulation was evaluated by Sirt6 knockdown in AML12 mouse hepatocytes.RGZ treatment ameliorated hepatic lipid accumulation and increased expression of Sirt6, peroxisome proliferator-activated receptor gamma coactivtor-1-α (Ppargc1a/PGC1-α) and Forkhead box O1 (Foxo1) in rat livers. AMP-activated protein kinase (AMPK) phosphorylation was also increased by RGZ, accompanied by alterations in phosphorylation of LKB1. Interestingly, in free fatty acid-treated cells, Sirt6 knockdown increased hepatocyte lipid accumulation measured as increased triglyceride contents (p = 0.035), suggesting that Sirt6 may be beneficial in reducing hepatic fat accumulation. In addition, Sirt6 knockdown abolished the effects of RGZ on hepatocyte fat accumulation, mRNA and protein expression of Ppargc1a/PGC1-α and Foxo1, and phosphorylation levels of LKB1 and AMPK, suggesting that Sirt6 is involved in RGZ-mediated metabolic effects.Our results demonstrate that RGZ significantly decreased hepatic lipid accumulation, and that this process appeared to be mediated by the activation of the Sirt6-AMPK pathway. We propose Sirt6 as a possible therapeutic target for hepatic steatosis

    The effect of Spirulina sauce, as a functional food, on cardiometabolic risk factors, oxidative stress biomarkers, glycemic profile, and liver enzymes in nonalcoholic fatty liver disease patients:A randomized double-blinded clinical trial

    Get PDF
    OBJECTIVE: This study sought to investigate the effect of Spirulina on cardiometabolic risk factors, oxidative stress biomarkers, glycemic profile, and liver enzymes in nonalcoholic fatty liver disease (NAFLD) patients. METHODS: This randomized, double‐blind clinical trial was performed on 46 NAFLD patients. Subjects were allocated to consume either Spirulina sauce or placebo, each 20 g/day for 8 weeks. Fatty liver grade, liver enzymes, anthropometric parameters, blood pressure, and serum lipids, glucose, insulin, malondialdehyde, and antioxidant capacity were assessed pre‐ and postintervention. RESULTS: Fatty liver grade was significantly different between the two groups. A significant change for ALT (alanine aminotransferase) and AST (aspartate aminotransferase) was seen between the two groups (p = .03 and .02, respectively), while ALP (alkaline phosphatase) serum levels were not significantly different within or between groups. Pertaining to glycemic profile, all variables, except HOMA‐IR, were not significantly different within or between groups. Finally, statistically significant changes were seen in both MDA (malondialdehyde) and TAC (total antioxidant capacity) among the groups (p = .04 and <.001, respectively). CONCLUSIONS: Spirulina may improve fatty liver grade by modifying liver enzymes, oxidative stress, and some lipid profiles; however, there was effect of Spirulina on anthropometric characteristics and blood pressure

    A Cohort Study of Serum Bilirubin Levels and Incident Non-Alcoholic Fatty Liver Disease in Middle Aged Korean Workers

    Get PDF
    BACKGROUND: Serum bilirubin may have potent antioxidant and cytoprotective effects. Serum bilirubin levels are inversely associated with several cardiovascular and metabolic endpoints, but their association with nonalcoholic fatty liver disease (NAFLD) has not been investigated except for a single cross-sectional study in a pediatric population. We assessed the prospective association between serum bilirubin concentrations (total, direct, and indirect) and the risk for NAFLD. METHODS AND FINDINGS: We performed a cohort study in 5,900 Korean men, 30 to 59 years of age, with no evidence of liver disease and no major risk factors for liver disease at baseline. Study participants were followed in annual or biennial health examinations between 2002 and 2009. The presence of fatty liver was determined at each visit by ultrasonography. We observed 1,938 incident cases of NAFLD during 28,101.8 person-years of follow-up. Increasing levels of serum direct bilirubin were progressively associated with a decreasing incidence of NAFLD. In age-adjusted models, the hazard ratio for NAFLD comparing the highest to the lowest quartile of serum direct bilirubin levels was 0.61 (95% CI 0.54-0.68). The association persisted after adjusting for multiple metabolic parameters (hazard ratio comparing the highest to the lowest quartile 0.86, 95% CI 0.76-0.98; P trend = 0.039). Neither serum total nor indirect bilirubin levels were significantly associated with the incidence of NAFLD. CONCLUSIONS: In this large prospective study, higher serum direct bilirubin levels were significantly associated with a lower risk of developing NAFLD, even adjusting for a variety of metabolic parameters. Further research is needed to elucidate the mechanisms underlying this association and to establish the role of serum direct bilirubin as a marker for NAFLD risk
    corecore