893 research outputs found

    Training load monitoring in team sports: A novel framework separating physiological and biomechanical load-adaptation pathways

    Get PDF
    There have been considerable advances in monitoring the training load in running-based team sports in recent years. Novel technologies nowadays offer ample opportunities to continuously monitor the activities of a player. These activities lead to internal biochemical stresses on the various physiological sub-systems. However, they also cause internal mechanical stresses on the various musculoskeletal tissues. Based on the amount and periodization of these stresses, the sub-systems and tissues adapt. So by monitoring external loads one hopes to estimate internal loads to predict adaptation, and this through understanding the load-adaptation pathways. We propose a new theoretical framework in which physiological and biomechanical load-adaptation pathways are considered separately, shedding a new light on some of the previously published evidence. We hope that it can help the various practitioners in this field (trainers, coaches, medical staff, sport scientists) to align their thoughts when considering the value of monitoring load, and that it can help researchers design experiments that can better rationalise training load monitoring for improving performance whilst preventing injury

    The relationship between whole-body external loading and body-worn accelerometry during team sports movements

    Get PDF
    Purpose: The aim of this study was to investigate the relationship between whole-body accelerations and body-worn accelerometry during team sports movements. Methods: Twenty male team sport players performed forward running, and anticipated 45° and 90° side-cuts at approach speeds of 2, 3, 4 and 5 m·s-1. Whole-body Centre of Mass (CoM) accelerations were determined from ground reaction forces collected from one foot-ground-contact and segmental accelerations were measured from a commercial GPS/accelerometer unit on the upper trunk. Three higher specification accelerometers were also positioned on the GPS unit, the dorsal aspect of the pelvis, and the shaft of the tibia. Associations between mechanical load variables (peak acceleration, loading rate and impulse) calculated from both CoM accelerations and segmental accelerations were explored using regression analysis. In addition one-dimensional Statistical Parametric Mapping (SPM) was used to explore the relationships between peak segmental accelerations and CoM acceleration profiles during the whole foot-ground-contact. Results: A weak relationship was observed for the investigated mechanical load variables regardless of accelerometer location and task (R2 values across accelerometer locations and tasks: peak acceleration 0.08-0.55, loading rate 0.27-0.59 and impulse 0.02-0.59). Segmental accelerations generally overestimated whole-body mechanical load. SPM analysis showed that peak segmental accelerations were mostly related to CoM accelerations during the first 40-50% of contact phase. Conclusions: Whilst body-worn accelerometry correlates to whole-body loading in team sports movements and can reveal useful estimates concerning loading, these correlations are not strong. Body-worn acclerometry should therefore be used with caution to monitor whole-body mechanical loading in the field

    An siRNA-based method for efficient silencing of gene expression in mature brown adipocytes

    Get PDF
    Brown adipose tissue is a promising therapeutic target for opposing obesity, glucose intolerance and insulin resistance. The ability to modulate gene expression in mature brown adipocytes is important to understand brown adipocyte function and delineate novel regulatory mechanisms of non-shivering thermogenesis. The aim of this study was to optimize a lipofection-based small interfering RNA (siRNA) transfection protocol for efficient silencing of gene expression in mature brown adipocytes. We determined that a critical parameter was to deliver the siRNA to mature adipocytes by reverse transfection, i.e. transfection of non-adherent cells. Using this protocol, we effectively knocked down both high- and low-abundance transcripts in a model of mature brown adipocytes (WT-1) as well as in primary mature mouse brown adipocytes. A functional consequence of the knockdown was confirmed by an attenuated increase in uncoupled respiration (thermogenesis) in response to β-adrenergic stimulation of mature WT-1 brown adipocytes transfected with uncoupling protein 1 siRNA. Efficient gene silencing was also obtained in various mouse and human white adipocyte models (3T3-L1, primary mouse white adipocytes, hMADS) with the ability to undergo “browning.” In summary, we report an easy and versatile reverse siRNA transfection protocol to achieve specific silencing of gene expression in various models of mature brown and browning-competent white adipocytes, including primary cells

    Two-photon NADH imaging exposes boundaries of oxygen diffusion in cortical vascular supply regions

    Get PDF
    Oxygen transport imposes a possible constraint on the brain's ability to sustain variable metabolic demands, but oxygen diffusion in the cerebral cortex has not yet been observed directly. We show that concurrent two-photon fluorescence imaging of endogenous nicotinamide adenine dinucleotide (NADH) and the cortical microcirculation exposes well-defined boundaries of tissue oxygen diffusion in the mouse cortex. The NADH fluorescence increases rapidly over a narrow, very low pO2 range with a p50 of 3.4±0.6 mm Hg, thereby establishing a nearly binary reporter of significant, metabolically limiting hypoxia. The transient cortical tissue boundaries of NADH fluorescence exhibit remarkably delineated geometrical patterns, which define the limits of tissue oxygen diffusion from the cortical microcirculation and bear a striking resemblance to the ideal Krogh tissue cylinder. The visualization of microvessels and their regional contribution to oxygen delivery establishes penetrating arterioles as major oxygen sources in addition to the capillary network and confirms the existence of cortical oxygen fields with steep microregional oxygen gradients. Thus, two-photon NADH imaging can be applied to expose vascular supply regions and to localize functionally relevant microregional cortical hypoxia with micrometer spatial resolution

    Glymphatic distribution of CSF-derived apoE into brain is isoform specific and suppressed during sleep deprivation

    Get PDF
    Sleep deprivation reduces the dextran radial distribution and 125I-apoE inflow from CSF into brain. A-B) Representative images of cascade blue dextran (CB) in mice on normal sleep cycle (A) and in mice during sleep deprivation (SD) (B). Cascade blue dextran (10 kDa) was injected into cisterna magna and the mice perfusion fixed (PFA) at 15 min. The vasculature was outline by lectin (green). Scale bars 100 μm (A-B). C) 125I-ApoE2 (yellow column), 125I-apoE3 (red column) and 125I-apoE4 (orange column) inflow into brain from the CSF were reduced in SD mice. D) 14C-inulin inflow into brain from the CSF was reduced with SD and not affected by apoE isoforms. 125I-ApoE (10 nM) and 14C-inulin were intracisternally injected and the brain analyzed for radioactivity. Values are mean ± SEM. N = 6 mice per group. (EPS 15099 kb

    Mechanical Player Load™ using trunk-mounted accelerometry in football: Is it a reliable, task- and player-specific observation?

    Get PDF
    The aim of the present study was to examine reliability and construct convergent validity of Player Load™ (PL) from trunk-mounted accelerometry, expressed as a cumulative measure and an intensity measure (PL · min(-)(1)). Fifteen male participants twice performed an overground football match simulation that included four different multidirectional football actions (jog, side cut, stride and sprint) whilst wearing a trunk-mounted accelerometer inbuilt in a global positioning system unit. Results showed a moderate-to-high reliability as indicated by the intra-class correlation coefficient (0.806-0.949) and limits of agreement. Convergent validity analysis showed considerable between-participant variation (coefficient of variation range 14.5-24.5%), which was not explained from participant demographics despite a negative association with body height for the stride task. Between-task variations generally showed a moderate correlation between ranking of participants for PL (0.593-0.764) and PL · min(-)(1) (0.282-0.736). It was concluded that monitoring PL(®) in football multidirectional actions presents moderate-to-high reliability, that between-participant variability most likely relies on the individual's locomotive skills and not their anthropometrics, and that the intensity of a task expressed by PL · min(-)(1) is largely related to the running velocity of the task
    • …
    corecore