6,171 research outputs found
First-principles study of possible shallow donors in ZnAl2O4 spinel
ZnAl2O4 (gahnite) is a ceramic which is considered a possible transparent conducting oxide (TCO) due to its wide band gap and transparency for UV. Defects play an important role in controlling the conductivity of a TCO material along with the dopant, which is the main source of conductivity in an otherwise insulating oxide. A comprehensive first-principles density functional theory study for point defects in ZnAl2O4 spinel is presented using the Heyd, Scuseria, and Ernzerhof hybrid functional (HSE06) to overcome the band gap problem. We have investigated the formation energies of intrinsic defects which include the Zn, Al, and O vacancy and the antisite defects: Zn at the Al site (Zn-Al) and Al at the Zn site (Al-Zn). The antisite defect Al-Zn has the lowest formation energy and acts as a shallow donor, indicating possible n-type conductivity in ZnAl2O4 spinel by Al doping
Simplifying instanton corrections to N=4 SYM correlators
This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited
On super form factors of half-BPS operators in N=4 super Yang-Mills
Open Access, (c) The Authors. Article funded by SCOAP3. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited
Multi-Regge kinematics and the moduli space of Riemann spheres with marked points
We show that scattering amplitudes in planar N = 4 Super Yang-Mills in
multi-Regge kinematics can naturally be expressed in terms of single-valued
iterated integrals on the moduli space of Riemann spheres with marked points.
As a consequence, scattering amplitudes in this limit can be expressed as
convolutions that can easily be computed using Stokes' theorem. We apply this
framework to MHV amplitudes to leading-logarithmic accuracy (LLA), and we prove
that at L loops all MHV amplitudes are determined by amplitudes with up to L +
4 external legs. We also investigate non-MHV amplitudes, and we show that they
can be obtained by convoluting the MHV results with a certain helicity flip
kernel. We classify all leading singularities that appear at LLA in the Regge
limit for arbitrary helicity configurations and any number of external legs.
Finally, we use our new framework to obtain explicit analytic results at LLA
for all MHV amplitudes up to five loops and all non-MHV amplitudes with up to
eight external legs and four loops.Comment: 104 pages, six awesome figures and ancillary files containing the
results in Mathematica forma
Modelling of friction stir welding of DH36 steel
A 3-D computational fluid dynamics (CFD) model
was developed to simulate the friction stir welding of 6-mm
plates of DH36 steel in an Eulerian steady-state framework.
The viscosity of steel plate was represented as a non-
Newtonian fluid using a flow stress function. The PCBN-WRe
hybrid tool was modelled in a fully sticking condition with the cooling system effectively represented as a negative heat flux. The model predicted the temperature distribution in the stirred zone (SZ) for six welding speeds including low, intermediate and
high welding speeds. The results showed higher asymmetry in
temperature for high welding speeds. Thermocouple data for the
high welding speed sample showed good agreement with the
CFD model result. The CFD model results were also validated
and compared against previous work carried out on the same
steel grade. The CFD model also predicted defects such as
wormholes and voids which occurred mainly on the advancing
side and are originated due to the local pressure distribution
between the advancing and retreating sides. These defects were
found to be mainly coming from the lack in material flow which
resulted from a stagnant zone formation especially at high tra-
verse speeds. Shear stress on the tool surface was found to in-
crease with increasing tool traverse speed. To produce a “sound”
weld, the model showed that the welding speed should remain
between 100 and 350 mm/min. Moreover, to prevent local melt-
ing, the maximum tool’s rotational speed should not exceed
550 RPM
Note on Bonus Relations for N=8 Supergravity Tree Amplitudes
We study the application of non-trivial relations between gravity tree
amplitudes, the bonus relations, to all tree-level amplitudes in N=8
supergravity. We show that the relations can be used to simplify explicit
formulae of supergravity tree amplitudes, by reducing the known form as a sum
of (n-2)! permutations obtained by solving on-shell recursion relations, to a
new form as a (n-3)!-permutation sum. We demonstrate the simplification by
explicit calculations of the next-to-maximally helicity violating (NMHV) and
next-to-next-to-maximally helicity violating (N^2MHV) amplitudes, and provide a
general pattern of bonus coefficients for all tree-level amplitudes.Comment: 21 pages, 9 figures; v2, minor changes, references adde
- …
