3,702 research outputs found
Ordering variable for parton showers
The parton splittings in a parton shower are ordered according to an ordering
variable, for example the transverse momentum of the daughter partons relative
to the direction of the mother, the virtuality of the splitting, or the angle
between the daughter partons. We analyze the choice of the ordering variable
and conclude that one particular choice has the advantage of factoring softer
splittings from harder splittings graph by graph in a physical gauge.Comment: 28 pages, 5 figure
Coherent States of the q--Canonical Commutation Relations
For the -deformed canonical commutation relations for in some Hilbert
space we consider representations generated from a vector
satisfying , where .
We show that such a representation exists if and only if .
Moreover, for these representations are unitarily equivalent
to the Fock representation (obtained for ). On the other hand
representations obtained for different unit vectors are disjoint. We
show that the universal C*-algebra for the relations has a largest proper,
closed, two-sided ideal. The quotient by this ideal is a natural -analogue
of the Cuntz algebra (obtained for ). We discuss the Conjecture that, for
, this analogue should, in fact, be equal to the Cuntz algebra
itself. In the limiting cases we determine all irreducible
representations of the relations, and characterize those which can be obtained
via coherent states.Comment: 19 pages, Plain Te
Adaptive response and enlargement of dynamic range
Many membrane channels and receptors exhibit adaptive, or desensitized,
response to a strong sustained input stimulus, often supported by protein
activity-dependent inactivation. Adaptive response is thought to be related to
various cellular functions such as homeostasis and enlargement of dynamic range
by background compensation. Here we study the quantitative relation between
adaptive response and background compensation within a modeling framework. We
show that any particular type of adaptive response is neither sufficient nor
necessary for adaptive enlargement of dynamic range. In particular a precise
adaptive response, where system activity is maintained at a constant level at
steady state, does not ensure a large dynamic range neither in input signal nor
in system output. A general mechanism for input dynamic range enlargement can
come about from the activity-dependent modulation of protein responsiveness by
multiple biochemical modification, regardless of the type of adaptive response
it induces. Therefore hierarchical biochemical processes such as methylation
and phosphorylation are natural candidates to induce this property in signaling
systems.Comment: Corrected typos, minor text revision
Double Parton Scattering Singularity in One-Loop Integrals
We present a detailed study of the double parton scattering (DPS)
singularity, which is a specific type of Landau singularity that can occur in
certain one-loop graphs in theories with massless particles. A simple formula
for the DPS singular part of a four-point diagram with arbitrary
internal/external particles is derived in terms of the transverse momentum
integral of a product of light cone wavefunctions with tree-level matrix
elements. This is used to reproduce and explain some results for DPS
singularities in box integrals that have been obtained using traditional loop
integration techniques. The formula can be straightforwardly generalised to
calculate the DPS singularity in loops with an arbitrary number of external
particles. We use the generalised version to explain why the specific MHV and
NMHV six-photon amplitudes often studied by the NLO multileg community are not
divergent at the DPS singular point, and point out that whilst all NMHV
amplitudes are always finite, certain MHV amplitudes do contain a DPS
divergence. It is shown that our framework for calculating DPS divergences in
loop diagrams is entirely consistent with the `two-parton GPD' framework of
Diehl and Schafer for calculating proton-proton DPS cross sections, but is
inconsistent with the `double PDF' framework of Snigirev.Comment: 29 pages, 8 figures. Minor corrections and clarifications added.
Version accepted for publication in JHE
Phase Structure and Compactness
In order to study the influence of compactness on low-energy properties, we
compare the phase structures of the compact and non-compact two-dimensional
multi-frequency sine-Gordon models. It is shown that the high-energy scaling of
the compact and non-compact models coincides, but their low-energy behaviors
differ. The critical frequency at which the sine-Gordon model
undergoes a topological phase transition is found to be unaffected by the
compactness of the field since it is determined by high-energy scaling laws.
However, the compact two-frequency sine-Gordon model has first and second order
phase transitions determined by the low-energy scaling: we show that these are
absent in the non-compact model.Comment: 21 pages, 5 figures, minor changes, final version, accepted for
publication in JHE
J/psi suppression at forward rapidity in Au+Au collisions at sqrt(s_NN)=39 and 62.4 GeV
We present measurements of the J/psi invariant yields in sqrt(s_NN)=39 and
62.4 GeV Au+Au collisions at forward rapidity (1.2<|y|<2.2). Invariant yields
are presented as a function of both collision centrality and transverse
momentum. Nuclear modifications are obtained for central relative to peripheral
Au+Au collisions (R_CP) and for various centrality selections in Au+Au relative
to scaled p+p cross sections obtained from other measurements (R_AA). The
observed suppression patterns at 39 and 62.4 GeV are quite similar to those
previously measured at 200 GeV. This similar suppression presents a challenge
to theoretical models that contain various competing mechanisms with different
energy dependencies, some of which cause suppression and others enhancement.Comment: 365 authors, 10 pages, 11 figures, 4 tables. Submitted to Phys. Rev.
C. Plain text data tables for the points plotted in figures for this and
previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
The Meridional Thermospheric Neutral Wind Measured by Radar and Optical Techniques in the Auroral Region
Radar observations of ion velocities in the magnetic zenith over Chatanika, Alaska, were used to determine the geomagnetic meridional component of the thermospheric neutral wind. Corrections for molecular diffusion and molecular ion contamination of the pure O+ composition assumed for the ionosphere were included in the analysis. Comparison of the averaged diurnal variation of the meridional wind showed good agreement between the two measurement techniques. Good agreement was also found for several cases of simultaneous observations. The evidence suggested that differences were caused by gravity waves. The 7 years of radar meridional wind results were examined with respect to magnetic activity, solar cycle phase, and season. During the day, the meridional component is poleward with a maximum of about 65 m/s between 1400 and 1600 local time. During the night, the wind is equatorward with a maximum of about 175 m/s between 0200 and 0500 local time. This maximum occurs after local magnetic midnight, which is about 0130 local time. When the neutral wind is averaged for 24 hours, there is a large net equatorward flow. During periods of increased magnetic activity, the nighttime wind between 2300 and 0600 local time becomes stronger toward the equator. The average increase between 0200 and 0600 local time is about 100 m/s; however, on individual days it can be as large as 400 m/s. These data pertain mostly to equinox, but the few summer and winter observations in the data set differ in the manner predicted by theory. Comparison of these results with theoretical models shows good agreement at most times, but suggests possible heating poleward of Chatanika during the morning hours. Observed exospheric temperature increases support this hypothesis
Measurements of double-helicity asymmetries in inclusive production in longitudinally polarized collisions at GeV
We report the double helicity asymmetry, , in inclusive
production at forward rapidity as a function of transverse momentum
and rapidity . The data analyzed were taken during
GeV longitudinally polarized collisions at the Relativistic Heavy Ion
Collider (RHIC) in the 2013 run using the PHENIX detector. At this collision
energy, particles are predominantly produced through gluon-gluon
scatterings, thus is sensitive to the gluon polarization
inside the proton. We measured by detecting the decay
daughter muon pairs within the PHENIX muon spectrometers in the
rapidity range . In this kinematic range, we measured the
to be ~(stat)~~(syst). The
can be expressed to be proportional to the product of the
gluon polarization distributions at two distinct ranges of Bjorken : one at
moderate range where recent RHIC data of jet and
double helicity spin asymmetries have shown evidence for significant gluon
polarization, and the other one covering the poorly known small- region . Thus our new results could be used to further
constrain the gluon polarization for .Comment: 335 authors, 10 pages, 4 figures, 3 tables, 2013 data. Version
accepted for publication by Phys. Rev. D. Plain text data tables for the
points plotted in figures for this and previous PHENIX publications are (or
will be) publicly available at http://www.phenix.bnl.gov/papers.htm
Medium modification of jet fragmentation in Au+Au collisions at sqrt(s_NN)=200 GeV measured in direct photon-hadron correlations
The jet fragmentation function is measured with direct photon-hadron
correlations in p+p and Au+Au collisions at sqrt(s_NN)=200 GeV. The p_T of the
photon is an excellent approximation to the initial p_T of the jet and the
ratio z_T=p_T^h/p_T^\gamma is used as a proxy for the jet fragmentation
function. A statistical subtraction is used to extract the direct photon-hadron
yields in Au+Au collisions while a photon isolation cut is applied in p+p. I_
AA, the ratio of jet fragment yield in Au+Au to that in p+p, indicates
modification of the jet fragmentation function. Suppression, most likely due to
energy loss in the medium, is seen at high z_T. The fragment yield at low z_T
is enhanced at large angles. Such a trend is expected from redistribution of
the lost energy into increased production of low-momentum particles.Comment: 562 authors, 70 insitutions, 8 pages, and 3 figures. Submitted to
Phys. Rev. Lett. v2 has minor changes to improve clarity. Plain text data
tables for the points plotted in figures for this and previous PHENIX
publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
- …
