8,109 research outputs found

    Rubber friction: role of the flash temperature

    Full text link
    When a rubber block is sliding on a hard rough substrate, the substrate asperities will exert time-dependent deformations of the rubber surface resulting in viscoelastic energy dissipation in the rubber, which gives a contribution to the sliding friction. Most surfaces of solids have roughness on many different length scales, and when calculating the friction force it is necessary to include the viscoelastic deformations on all length scales. The energy dissipation will result in local heating of the rubber. Since the viscoelastic properties of rubber-like materials are extremely strongly temperature dependent, it is necessary to include the local temperature increase in the analysis. At very low sliding velocity the temperature increase is negligible because of heat diffusion, but already for velocities of order 0.01 m/s the local heating may be very important. Here I study the influence of the local heating on the rubber friction, and I show that in a typical case the temperature increase results in a decrease in rubber friction with increasing sliding velocity for v > 0.01 m/s. This may result in stick-slip instabilities, and is of crucial importance in many practical applications, e.g., for the tire-road friction, and in particular for ABS-breaking systems.Comment: 22 pages, 27 figure

    Growth and electronic and magnetic structure of iron oxide films on Pt(111)

    Full text link
    Ultrathin (111)-oriented polar iron oxide films were grown on a Pt(111) single crystal either by the reactive deposition of iron or oxidation of metallic iron monolayers. These films were characterized using low energy electron diffraction, scanning tunneling microscopy and conversion electron Mossbauer spectroscopy. The reactive deposition of Fe led to the island growth of Fe3O4, in which the electronic and magnetic properties of the bulk material were modulated by superparamagnetic size effects for thicknesses below 2 nm, revealing specific surface and interface features. In contrast, the oxide films with FeO stoichiometry, which could be stabilized as thick as 4 nm under special preparation conditions, had electronic and magnetic properties that were very different from their bulk counterpart, w\"ustite. Unusual long range magnetic order appeared at room temperature for thicknesses between three and ten monolayers, the appearance of which requires severe structural modification from the rock-salt structure.Comment: 17 pages, 6 figures, 50 reference

    Static Versus Dynamic Friction: The Role of Coherence

    Full text link
    A simple model for solid friction is analyzed. It is based on tangential springs representing interlocked asperities of the surfaces in contact. Each spring is given a maximal strain according to a probability distribution. At their maximal strain the springs break irreversibly. Initially all springs are assumed to have zero strain, because at static contact local elastic stresses are expected to relax. Relative tangential motion of the two solids leads to a loss of coherence of the initial state: The springs get out of phase due to differences in their sizes. This mechanism alone is shown to lead to a difference between static and dynamic friction forces already. We find that in this case the ratio of the static and dynamic coefficients decreases with increasing relative width of the probability distribution, and has a lower bound of 1 and an upper bound of 2.Comment: 10 pages, 2 figures, revtex

    Elastic contact between self-affine surfaces: Comparison of numerical stress and contact correlation functions with analytic predictions

    Full text link
    Contact between an elastic manifold and a rigid substrate with a self-affine fractal surface is reinvestigated with Green's function molecular dynamics. Stress and contact autocorrelation functions (ACFs) are found to decrease algebraically. A rationale is provided for the observed similarity in the exponents for stress and contact ACFs. Both exponents differ substantially from analytic predictions over the range of Hurst roughness exponents studied. The effect of increasing the range of interactions from a hard sphere repulsion to exponential decay is analyzed. Results for exponential interactions are accurately described by recent systematic corrections to Persson's contact mechanics theory. The relation between the area of simply connected contact patches and the normal force is also studied. Below a threshold size the contact area and force are consistent with Hertzian contact mechanics, while area and force are linearly related in larger contact patches.Comment: 12 pages, 9 figure

    Letter: Faecal volatile organic metabolites, promising biomarkers in inflammatory bowel disease and Letter: Faecal volatile organic metabolites as novel diagnostic biomarkers in inflammatory bowel disease. Authors' reply

    Get PDF
    The aetiology of inflammatory bowel disease (IBD) remains poorly understood. Recent evidence suggests an important role of gut microbial dysbiosis in IBD, and this may be associated with changes in faecal volatile organic metabolites (VOMs).To describe the changes in the faecal VOMs of patients with IBD and establish their diagnostic potential as non-invasive biomarkers.Faecal samples were obtained from 117 people with Crohn's disease (CD), 100 with ulcerative colitis (UC), and 109 healthy controls. Faecal VOMs were extracted using solid-phase micro-extraction and analysed by gas chromatography mass spectrometry. Data analysis was carried out using partial least squares-discriminate analysis (PLS-DA) to determine class membership based on distinct metabolomic profiles.The PLS-DA model showed clear separation of active CD from inactive disease and healthy controls (P < 0.001). Heptanal, 1-octen-3-ol, 2-piperidinone and 6-methyl-2-heptanone were up-regulated in the active CD group [variable important in projection (VIP) score 2.8, 2.7, 2.6 and 2.4, respectively], while methanethiol, 3-methyl-phenol, short-chain fatty acids and ester derivatives were found to be less abundant (VIP score of 3.5, 2.6, 1.5 and 1.2, respectively). The PLS-DA model also separated patients with small bowel CD from healthy controls and those with colonic CD from UC (P < 0.001). In contrast, less distinct separation was observed between active UC, inactive UC and healthy controls.Analysis of faecal volatile organic metabolites can provide an understanding of gut metabolomic changes in IBD. It has the potential to provide a non-invasive means of diagnosing IBD, and can differentiate between UC and CD

    Performance of an Operating High Energy Physics Data Grid: D0SAR-Grid

    Full text link
    The D0 experiment at Fermilab's Tevatron will record several petabytes of data over the next five years in pursuing the goals of understanding nature and searching for the origin of mass. Computing resources required to analyze these data far exceed capabilities of any one institution. Moreover, the widely scattered geographical distribution of D0 collaborators poses further serious difficulties for optimal use of human and computing resources. These difficulties will exacerbate in future high energy physics experiments, like the LHC. The computing grid has long been recognized as a solution to these problems. This technology is being made a more immediate reality to end users in D0 by developing a grid in the D0 Southern Analysis Region (D0SAR), D0SAR-Grid, using all available resources within it and a home-grown local task manager, McFarm. We will present the architecture in which the D0SAR-Grid is implemented, the use of technology and the functionality of the grid, and the experience from operating the grid in simulation, reprocessing and data analyses for a currently running HEP experiment.Comment: 3 pages, no figures, conference proceedings of DPF04 tal

    On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion

    Full text link
    Surface roughness has a huge impact on many important phenomena. The most important property of rough surfaces is the surface roughness power spectrum C(q). We present surface roughness power spectra of many surfaces of practical importance, obtained from the surface height profile measured using optical methods and the Atomic Force Microscope. We show how the power spectrum determines the contact area between two solids. We also present applications to sealing, rubber friction and adhesion for rough surfaces, where the power spectrum enters as an important input.Comment: Topical review; 82 pages, 61 figures; Format: Latex (iopart). Some figures are in Postscript Level

    Effects of electromagnetic waves on the electrical properties of contacts between grains

    Full text link
    A DC electrical current is injected through a chain of metallic beads. The electrical resistances of each bead-bead contacts are measured. At low current, the distribution of these resistances is large and log-normal. At high enough current, the resistance distribution becomes sharp and Gaussian due to the creation of microweldings between some beads. The action of nearby electromagnetic waves (sparks) on the electrical conductivity of the chain is also studied. The spark effect is to lower the resistance values of the more resistive contacts, the best conductive ones remaining unaffected by the spark production. The spark is able to induce through the chain a current enough to create microweldings between some beads. This explains why the electrical resistance of a granular medium is so sensitive to the electromagnetic waves produced in its vicinity.Comment: 4 pages, 5 figure

    Static Friction between Elastic Solids due to Random Asperities

    Full text link
    Several workers have established that the Larkin domains for two three dimensional nonmetallic elastic solids in contact with each other at a disordered interface are enormously large. This implies that there should be negligible static friction per unit area in the macroscopic solid limit. The present work argues that the fluctuations in the heights of the random asperities at the interface that occur in the Greenwood-Williamson model can account for static friction.Comment: Contains some improvements in the treatment of the subjec
    corecore