1,043 research outputs found
Search for spontaneous muon emission from lead nuclei
We describe a possible search for muonic radioactivity from lead nuclei using
the base elements ("bricks" composed by lead and nuclear emulsion sheets) of
the long-baseline OPERA neutrino experiment. We present the results of a Monte
Carlo simulation concerning the expected event topologies and estimates of the
background events. Using few bricks, we could reach a good sensitivity level.Comment: 12 pages, 4 figure
Observation of nu_tau appearance in the CNGS beam with the OPERA experiment
The OPERA experiment is searching for nu_mu -> nu_tau oscillations in
appearance mode i.e. via the direct detection of tau leptons in nu_tau charged
current interactions. The evidence of nu_mu -> nu_tau appearance has been
previously reported with three nu_tau candidate events using a sub-sample of
data from the 2008-2012 runs. We report here a fourth nu_tau candidate event,
with the tau decaying into a hadron, found after adding the 2012 run events
without any muon in the final state to the data sample. Given the number of
analysed events and the low background, nu_mu -> nu_tau oscillations are
established with a significance of 4.2sigma.Comment: Submitted to Progress of Theoretical and Experimental Physics (PTEP
Determination of the muon charge sign with the dipolar spectrometers of the OPERA experiment
The OPERA long-baseline neutrino-oscillation experiment has observed the
direct appearance of in the CNGS beam. Two large muon
magnetic spectrometers are used to identify muons produced in the
leptonic decay and in interactions by measuring their charge and
momentum. Besides the kinematic analysis of the decays, background
resulting from the decay of charmed particles produced in
interactions is reduced by efficiently identifying the muon track. A new method
for the charge sign determination has been applied, via a weighted angular
matching of the straight track-segments reconstructed in the different parts of
the dipole magnets. Results obtained for Monte Carlo and real data are
presented. Comparison with a method where no matching is used shows a
significant reduction of up to 40\% of the fraction of wrongly determined
charges.Comment: 10 pages. Improvements in the tex
Procedure for short-lived particle detection in the OPERA experiment and its application to charm decays
The OPERA experiment, designed to perform the first observation of oscillations in appearance mode through the detection of
the leptons produced in charged current interactions, has
collected data from 2008 to 2012. In the present paper, the procedure developed
to detect particle decays, occurring over distances of the order of 1 mm
from the neutrino interaction point, is described in detail. The results of its
application to the search for charmed hadrons are then presented as a
validation of the methods for appearance detection
Search for anomalies in the neutrino sector with muon spectrometers and large LArTPC imaging detectors at CERN
A new experiment with an intense ~2 GeV neutrino beam at CERN SPS is proposed
in order to definitely clarify the possible existence of additional neutrino
states, as pointed out by neutrino calibration source experiments, reactor and
accelerator experiments and measure the corresponding oscillation parameters.
The experiment is based on two identical LAr-TPCs complemented by magnetized
spectrometers detecting electron and muon neutrino events at Far and Near
positions, 1600 m and 300 m from the proton target, respectively. The ICARUS
T600 detector, the largest LAr-TPC ever built with a size of about 600 ton of
imaging mass, now running in the LNGS underground laboratory, will be moved at
the CERN Far position. An additional 1/4 of the T600 detector (T150) will be
constructed and located in the Near position. Two large area spectrometers will
be placed downstream of the two LAr-TPC detectors to perform charge
identification and muon momentum measurements from sub-GeV to several GeV
energy range, greatly complementing the physics capabilities. This experiment
will offer remarkable discovery potentialities, collecting a very large number
of unbiased events both in the neutrino and antineutrino channels, largely
adequate to definitely settle the origin of the observed neutrino-related
anomalies.Comment: Contribution to the European Strategy for Particle Physics - Open
Symposium Preparatory Group, Kracow 10-12 September 201
First events from the CNGS neutrino beam detected in the OPERA experiment
The OPERA neutrino detector at the underground Gran Sasso Laboratory (LNGS)
was designed to perform the first detection of neutrino oscillations in
appearance mode, through the study of nu_mu to nu_tau oscillations. The
apparatus consists of a lead/emulsion-film target complemented by electronic
detectors. It is placed in the high-energy, long-baseline CERN to LNGS beam
(CNGS) 730 km away from the neutrino source. In August 2006 a first run with
CNGS neutrinos was successfully conducted. A first sample of neutrino events
was collected, statistically consistent with the integrated beam intensity.
After a brief description of the beam and of the various sub-detectors, we
report on the achievement of this milestone, presenting the first data and some
analysis results.Comment: Submitted to the New Journal of Physic
Emulsion sheet doublets as interface trackers for the OPERA experiment
New methods for efficient and unambiguous interconnection between electronic
counters and target units based on nuclear photographic emulsion films have
been developed. The application to the OPERA experiment, that aims at detecting
oscillations between mu neutrino and tau neutrino in the CNGS neutrino beam, is
reported in this paper. In order to reduce background due to latent tracks
collected before installation in the detector, on-site large-scale treatments
of the emulsions ("refreshing") have been applied. Changeable Sheet (CSd)
packages, each made of a doublet of emulsion films, have been designed,
assembled and coupled to the OPERA target units ("ECC bricks"). A device has
been built to print X-ray spots for accurate interconnection both within the
CSd and between the CSd and the related ECC brick. Sample emulsion films have
been extensively scanned with state-of-the-art automated optical microscopes.
Efficient track-matching and powerful background rejection have been achieved
in tests with electronically tagged penetrating muons. Further improvement of
in-doublet film alignment was obtained by matching the pattern of low-energy
electron tracks. The commissioning of the overall OPERA alignment procedure is
in progress.Comment: 19 pages, 19 figure
Measurement of the atmospheric muon charge ratio with the OPERA detector
The OPERA detector at the Gran Sasso underground laboratory (LNGS) was used
to measure the atmospheric muon charge ratio in the TeV energy region. We
analyzed 403069 atmospheric muons corresponding to 113.4 days of livetime
during the 2008 CNGS run. We computed separately the muon charge ratio for
single and for multiple muon events in order to select different energy regions
of the primary cosmic ray spectrum and to test the charge ratio dependence on
the primary composition. The measured charge ratio values were corrected taking
into account the charge-misidentification errors. Data have also been grouped
in five bins of the "vertical surface energy". A fit to a simplified model of
muon production in the atmosphere allowed the determination of the pion and
kaon charge ratios weighted by the cosmic ray energy spectrum.Comment: 14 pages, 10 figure
Prospects for the measurement of muon-neutrino disappearance at the FNAL-Booster
Neutrino physics is nowadays receiving more and more attention as a possible
source of information for the long-standing problem of new physics beyond the
Standard Model. The recent measurement of the mixing angle in the
standard mixing oscillation scenario encourages us to pursue the still missing
results on leptonic CP violation and absolute neutrino masses. However,
puzzling measurements exist that deserve an exhaustive evaluation. The NESSiE
Collaboration has been setup to undertake conclusive experiments to clarify the
muon-neutrino disappearance measurements at small , which will be able to
put severe constraints to models with more than the three-standard neutrinos,
or even to robustly measure the presence of a new kind of neutrino oscillation
for the first time. To this aim the use of the current FNAL-Booster neutrino
beam for a Short-Baseline experiment has been carefully evaluated. This
proposal refers to the use of magnetic spectrometers at two different sites,
Near and Far. Their positions have been extensively studied, together with the
possible performances of two OPERA-like spectrometers. The proposal is
constrained by availability of existing hardware and a time-schedule compatible
with the CERN project for a new more performant neutrino beam, which will
nicely extend the physics results achievable at the Booster. The possible FNAL
experiment will allow to clarify the current disappearance tension
with appearance and disappearance at the eV mass scale. Instead, a new
CERN neutrino beam would allow a further span in the parameter space together
with a refined control of systematics and, more relevant, the measurement of
the antineutrino sector, by upgrading the spectrometer with detectors currently
under R&D study.Comment: 76 pages, 52 figure
Limits on muon-neutrino to tau-neutrino oscillations induced by a sterile neutrino state obtained by OPERA at the CNGS beam
The OPERA experiment, exposed to the CERN to Gran Sasso beam,
collected data from 2008 to 2012. Four oscillated Charged Current
interaction candidates have been detected in appearance mode, which are
consistent with oscillations at the atmospheric within the "standard" three-neutrino framework. In this paper, the OPERA
appearance results are used to derive limits on the mixing
parameters of a massive sterile neutrino.Comment: 11 pages, 4 figures; reference to Planck result updated in the
Introduction. Submitted to JHE
- …
