6 research outputs found

    'SOSORT consensus paper on brace action: TLSO biomechanics of correction (investigating the rationale for force vector selection)'

    Get PDF
    BACKGROUND: The effectiveness of orthotic treatment continues to be controversial in international medical literature due to differences in the reported results and conclusions of various studies. Heterogeneity of the samples has been suggested as a reason for conflicting results. Besides the obvious theoretical differences between the brace concepts, the variability in the technical factors can also explain the contradictory results between same brace types. This paper will investigate the degree of variability among responses of scoliosis specialists from the Brace Study Ground of the International Society on Scoliosis Orthopedic and Rehabilitation Treatment SOSORT. Ultimately, this information could be a foundation for establishing a consensus and framework for future prospective controlled studies. METHODS: A preliminary questionnaire on the topic of 'brace action' relative to the theory of three-dimensional scoliosis correction and brace treatment was developed and circulated to specialists interested in the conservative treatment of adolescent idiopathic scoliosis. A particular case was presented (main thoracic curve with minor lumbar). Several key points emerged and were used to develop a second questionnaire which was discussed and full filed after the SOSORT consensus meeting (Milano, Italy, January 2005). RESULTS: Twenty-one questionnaires were completed. The Chêneau brace was the most frequently recommended. The importance of the three point system mechanism was stressed. Options about proper pad placement on the thoracic convexity were divided 50% for the pad reaching or involving the apical vertebra and 50% for the pad acting caudal to the apical vertebra. There was agreement about the direction of the vector force, 85% selecting a 'dorso lateral to ventro medial' direction but about the shape of the pad to produce such a force. Principles related to three-dimensional correction achieved high consensus (80%–85%), but suggested methods of correction were quite diverse. CONCLUSION: This study reveals that among participating SOSORT specialists there continues to be a strongly held and conflicting if not a contentious opinion regarding brace design and treatment. If the goal of a 'treatment consensus' is realistic and achievable, significantly more effort will be required to reconcile these differences

    Sagittal alignment of spine and pelvis regulated by pelvic incidence: standard values and prediction of lordosis

    No full text
    Pelvis and spinal curves were studied with an angular parameter typical of pelvis morphology: pelvic incidence. A significant chain of correlations between positional pelvic and spinal parameters and incidence is known. This study investigated standards of incidence and a predictive equation of lordosis from selective pelvic and spinal individual parameters. One hundred and forty nine (78 men and 71 women) healthy adults, aged 19-50 years, with no spinal disorders, were included and had a full-spine lateral X-ray in a standardised upright position. Computerised technology was used for the measurement of angular parameters. Mean-deviation section of each parameter and Pearson correlation test were calculated. A multivariate selection algorithm was running with the lordosis (predicted variable) and the other spinal and pelvic parameters (predictor variables), to determine the best sets of predictors to include in the model. A low incidence ( 62 degrees) increased sacral-slope and the lordosis is more pronounced. Lordosis predictive equation is based on incidence, kyphosis, sacral-slope and +/- T9 tilt. The confidence limits and the residuals (the difference between measured and predicted lordosis) assessed the predicted lordosis accuracy of the model: respectively, +/- 1.65 and 2.41 degrees with the 4-item model; +/- 1.73 and 3.62 degrees with the 3-item model. The ability of the functional spine-pelvis unit to search for a sagittal balance depended both on the incidence and on the variation section of the other positional parameters. Incidence gave an adaptation potential at two levels of positional compensation: overlying state (kyphosis, T9 tilt), underlying state (sacral slope, pelvic tilt). The biomechanical and clinical conditions of the standing posture (as in scoliosis, low back pain, spondylisthesis, spine surgery, obesity and postural impairments) can be studied by comparing the measured lordosis with the predicted lordosis
    corecore