984 research outputs found
Deep convolutional neural networks for segmenting 3D in vivo multiphoton images of vasculature in Alzheimer disease mouse models
The health and function of tissue rely on its vasculature network to provide
reliable blood perfusion. Volumetric imaging approaches, such as multiphoton
microscopy, are able to generate detailed 3D images of blood vessels that could
contribute to our understanding of the role of vascular structure in normal
physiology and in disease mechanisms. The segmentation of vessels, a core image
analysis problem, is a bottleneck that has prevented the systematic comparison
of 3D vascular architecture across experimental populations. We explored the
use of convolutional neural networks to segment 3D vessels within volumetric in
vivo images acquired by multiphoton microscopy. We evaluated different network
architectures and machine learning techniques in the context of this
segmentation problem. We show that our optimized convolutional neural network
architecture, which we call DeepVess, yielded a segmentation accuracy that was
better than both the current state-of-the-art and a trained human annotator,
while also being orders of magnitude faster. To explore the effects of aging
and Alzheimer's disease on capillaries, we applied DeepVess to 3D images of
cortical blood vessels in young and old mouse models of Alzheimer's disease and
wild type littermates. We found little difference in the distribution of
capillary diameter or tortuosity between these groups, but did note a decrease
in the number of longer capillary segments () in aged animals as
compared to young, in both wild type and Alzheimer's disease mouse models.Comment: 34 pages, 9 figure
The Two-loop Anomalous Dimension Matrix for Soft Gluon Exchange
The resummation of soft gluon exchange for QCD hard scattering requires a
matrix of anomalous dimensions. We compute this matrix directly for arbitrary 2
to n massless processes for the first time at two loops. Using color generator
notation, we show that it is proportional to the one-loop matrix. This result
reproduces all pole terms in dimensional regularization of the explicit
calculations of massless 2 to 2 amplitudes in the literature, and it predicts
all poles at next-to-next-to-leading order in any 2 to n process that has been
computed at next-to-leading order. The proportionality of the one- and two-loop
matrices makes possible the resummation in closed form of the
next-to-next-to-leading logarithms and poles in dimensional regularization for
the 2 to n processes.Comment: 5 pages, 1 figure, revte
Supervised Nonparametric Image Parcellation
Author Manuscript 2010 August 25. 12th International Conference, London, UK, September 20-24, 2009, Proceedings, Part IISegmentation of medical images is commonly formulated as a supervised learning problem, where manually labeled training data are summarized using a parametric atlas. Summarizing the data alleviates the computational burden at the expense of possibly losing valuable information on inter-subject variability. This paper presents a novel framework for Supervised Nonparametric Image Parcellation (SNIP). SNIP models the intensity and label images as samples of a joint distribution estimated from the training data in a non-parametric fashion. By capitalizing on recently developed fast and robust pairwise image alignment tools, SNIP employs the entire training data to segment a new image via Expectation Maximization. The use of multiple registrations increases robustness to occasional registration failures. We report experiments on 39 volumetric brain MRI scans with manual labels for the white matter, cortex and subcortical structures. SNIP yields better segmentation than state-of-the-art algorithms in multiple regions of interest.NAMIC (NIHNIBIBNAMICU54-EB005149)NAC (NIHNCRRNACP41-RR13218)mBIRN (NIHNCRRmBIRNU24-RR021382)NIH NINDS (Grant R01-NS051826)National Science Foundation (U.S.) (CAREER Grant 0642971)NCRR (P41-RR14075)NCRR (R01 RR16594-01A1)NIBIB (R01 EB001550)NIBIB (R01EB006758)NINDS (R01 NS052585-01)Mind Research InstituteEllison Medical FoundationSingapore. Agency for Science, Technology and Researc
Stability of Scalar Fields in Warped Extra Dimensions
This work sets up a general theoretical framework to study stability of
models with a warped extra dimension where N scalar fields couple minimally to
gravity. Our analysis encompasses Randall-Sundrum models with branes and bulk
scalars, and general domain-wall models. We derive the Schrodinger equation
governing the spin-0 spectrum of perturbations of such a system. This result is
specialized to potentials generated using fake supergravity, and we show that
models without branes are free of tachyonic modes. Turning to the existence of
zero modes, we prove a criterion which relates the number of normalizable zero
modes to the parities of the scalar fields. Constructions with definite parity
and only odd scalars are shown to be free of zero modes and are hence
perturbatively stable. We give two explicit examples of domain-wall models with
a soft wall, one which admits a zero mode and one which does not. The latter is
an example of a model that stabilizes a compact extra dimension using only bulk
scalars and does not require dynamical branes.Comment: 25 pages, 2 figures; v2: minor changes to text, references added,
matches published versio
Flavour Physics in the Soft Wall Model
We extend the description of flavour that exists in the Randall-Sundrum (RS)
model to the soft wall (SW) model in which the IR brane is removed and the
Higgs is free to propagate in the bulk. It is demonstrated that, like the RS
model, one can generate the hierarchy of fermion masses by localising the
fermions at different locations throughout the space. However, there are two
significant differences. Firstly the possible fermion masses scale down, from
the electroweak scale, less steeply than in the RS model and secondly there now
exists a minimum fermion mass for fermions sitting towards the UV brane. With a
quadratic Higgs VEV, this minimum mass is about fifteen orders of magnitude
lower than the electroweak scale. We derive the gauge propagator and despite
the KK masses scaling as , it is demonstrated that the
coefficients of four fermion operators are not divergent at tree level. FCNC's
amongst kaons and leptons are considered and compared to calculations in the RS
model, with a brane localised Higgs and equivalent levels of tuning. It is
found that since the gauge fermion couplings are slightly more universal and
the SM fermions typically sit slightly further towards the UV brane, the
contributions to observables such as and , from the
exchange of KK gauge fields, are significantly reduced.Comment: 33 pages, 15 figures, 5 tables; v2: references added; v3:
modifications to figures 4,5 and 6. version to appear in JHE
The Effective Lagrangian for Bulk Fermions in Models with Extra Dimensions
We compute the dimension 6 effective Lagrangian arising from the tree level
integration of an arbitrary number of bulk fermions in models with warped extra
dimensions. The coefficients of the effective operators are written in terms of
simple integrals of the metric and are valid for arbitrary warp factors, with
or without an infrared brane, and for a general Higgs profile. All relevant
tree level fermion effects in electroweak and flavor observables can be
computed using this effective Lagrangian.Comment: 22 pages. V2: typos corrected, matches published versio
Acute liver transplantation in a 41-year-old male patient presenting symptoms of adult-onset Still's disease
L
Suppressing Electroweak Precision Observables in 5D Warped Models
We elaborate on a recently proposed mechanism to suppress large contributions
to the electroweak precision observables in five dimensional (5D) warped
models, without the need for an extended 5D gauge sector. The main ingredient
is a modification of the AdS metric in the vicinity of the infrared (IR) brane
corresponding to a strong deviation from conformality in the IR of the 4D
holographic dual. We compute the general low energy effective theory of the 5D
warped Standard Model, emphasizing additional IR contributions to the wave
function renormalization of the light Higgs mode. We also derive expressions
for the S and T parameters as a function of a generic 5D metric and zero-mode
wave functions. We give an approximate formula for the mass of the radion that
works even for strong deviation from the AdS background. We proceed to work out
the details of an explicit model and derive bounds for the first KK masses of
the various bulk fields. The radion is the lightest new particle although its
mass is already at about 1/3 of the mass of the lightest resonances, the KK
states of the gauge bosons. We examine carefully various issues that can arise
for extreme choices of parameters such as the possible reintroduction of the
hierarchy problem, the onset of nonperturbative physics due to strong IR
curvature or the creation of new hierarchies near the Planck scale. We conclude
that a KK scale of 1 TeV is compatible with all these constraints.Comment: 44 pages, 11 figures, references adde
A Material Perspective on Consequence of Deformation Heating During Stamping of DP Steels
Recent studies showed that, during stamping of high strength steels at industrially relevant production rates, local temperature in the blank may rise up to 200°C – 300°C due to deformation heating. Moreover, die temperature may also rise up to 100°C – 150°C for progressive stamping dies. Based on the common assumption that the blank softens as the temperature increases, thermal softening creates a margin in Forming Limit Diagram (FLD) and therefore the FLD determined at room temperature can safely be used for those cases. In this article, the validity of this assumption on DP590 steel is questioned by high temperature tensile tests (RT - 300°C) at various strain rates (10-3 s-1 – 1 s-1). The results indicated a decrease both in uniform and total elongation in 200°C – 300°C range together with several other symptoms of Dynamic Strain Aging (DSA) at all strain rates. Concurrent with the DSA, the simulated FLD confirms the lower formability at high temperature and strain rates. Thus, it is concluded FLD determined at RT may not be valid for the investigated steels
- …
