1,687 research outputs found
Recommended from our members
Are Mock Jurors Influenced by the Defendants Gender, Socio-Economic Status and Emotional State in Forensic Medicine?
The aim of this study was to investigate whether mock jurors’ decisions were affected by the defendant’s gender, socio-economic status and emotional state in mock cases. The implications are far reaching, especially in trials that involve forensic medicine. An experimental design was used where a total of 24 participants from Bournemouth University took part, and were assigned to one of four groups. In these groups, the three independent variables were manipulated. Participants were presented with two murder/manslaughter cases. The results suggest male defendants received harsher judgements than female defendants. More female defendants were found not guilty than male defendants. Male defendants from a high socio-economic background received harsher judgements than male defendants from a low socio-economic background. Female defendants from a low socio-economic background received harsher judgements than female defendants from a high socio-economic background. Female defendants were found to be more trustworthy than male defendants. These findings are discussed are discussed in the context of the jury’s verdict, sentence length and personal opinion of the defendant
Sample-size determination and adherence in randomised controlled trials published in anaesthetic journals
Background: Sample-size calculations are critical to ensure that randomised control trials return robust and reliable results. The estimated treatment effects used in these calculations is often significantly different from the actual treatment effect and can dramatically impact trial validity.Methods: This study examined sample-size calculations in randomised controlled trials designed to show superiority between two-arm parallel groups with a single primary outcome that were published in the top five anaesthetic journals for 2014 (as per Thomson Reuters impact factors). In particular, it sought to determine treatment effect estimations used in a priori sample-size calculations and compare them with actual treatment effects.Results: A PubMed search identified 209 possible articles; 52 were drawn for full text review; and 28 were included in the final analysis. The relative difference between expected and actual event rates was greater than 20% in 80% of trials and greater than 50% in 44% of trials.Conclusions: Unrealistic assumptions of treatment effects in randomised controlled trials published in anaesthesia journals are common. Trial sample sizes should be calculated thoughtfully and realistically and should be fully reported in both trial protocols and publications. Researchers should be aware of the opportunity cost as well as the possible dangers to patients when unrealistic assumptions are made. Where possible researchers should collaborate to achieve meaningful trial sample sizes to ensure robust clinical findings.Keywords: anaesthesia, clinical trial, power calculations, sample size, treatment effect, type II erro
The Pattern Speed of the Galactic Bar
Most late-type stars in the solar neighborhood have velocities similar to the
local standard of rest (LSR), but there is a clearly separated secondary
component corresponding to a slower rotation and a mean outward motion.
Detailed simulations of the response of a stellar disk to a central bar show
that such a bi-modality is expected from outer-Lindblad resonant scattering.
When constraining the run of the rotation curve by the proper motion of Sgr A*
and the terminal gas velocities, the value observed for the rotation velocity
separating the two components results in a value of (53+/-3)km/s/kpc for the
pattern speed of the bar, only weakly dependent on the precise values for Ro
and bar angle phi.Comment: 5 pages LaTeX, 2 Figs, accepted for publication in ApJ Letter
The Visibility of Galactic Bars and Spiral Structure At High Redshifts
We investigate the visibility of galactic bars and spiral structure in the
distant Universe by artificially redshifting 101 B-band CCD images of local
spiral galaxies from the Ohio State University Bright Spiral Galaxy Survey. Our
artificially redshifted images correspond to Hubble Space Telescope I-band
observations of the local galaxy sample seen at z=0.7, with integration times
matching those of both the very deep Northern Hubble Deep Field data, and the
much shallower Flanking Field observations. The expected visibility of galactic
bars is probed in two ways: (1) using traditional visual classification, and
(2) by charting the changing shape of the galaxy distribution in "Hubble
space", a quantitative two-parameter description of galactic structure that
maps closely on to Hubble's original tuning fork. Both analyses suggest that
over 2/3 of strongly barred luminous local spirals i.e. objects classified as
SB in the Third Reference Catalog) would still be classified as strongly barred
at z=0.7 in the Hubble Deep Field data. Under the same conditions, most weakly
barred spirals (classified SAB in the Third Reference Catalog) would be
classified as regular spirals. The corresponding visibility of spiral structure
is assessed visually, by comparing luminosity classifications for the
artificially redshifted sample with the corresponding luminosity
classifications from the Revised Shapley Ames Catalog. We find that for
exposures times similar to that of the Hubble Deep Field spiral structure
should be detectable in most luminous low-inclination spiral galaxies at z=0.7
in which it is present. [ABRIDGED]Comment: Accepted for publication in The Astronomical Journa
Kinematics of Spiral Arm Streaming in M51
We use CO and H alpha velocity fields to study the gas kinematics in the
spiral arms and interarms of M51 (NGC 5194), and fit the 2D velocity field to
estimate the radial and tangential velocity components as a function of spiral
phase (arm distance). We find large radial and tangential streaming velocities,
which are qualitatively consistent with the predictions of density wave theory
and support the existence of shocks. The streaming motions are complex, varying
significantly across the galaxy as well as along and between arms. Aberrations
in the velocity field indicate that the disk is not coplanar, perhaps as far in
as 20\arcsec\ (800 pc) from the center. Velocity profile fits from CO and H
alpha are typically similar, suggesting that most of the H alpha emission
originates from regions of recent star formation. We also explore vortensity
and mass conservation conditions. Vortensity conservation, which does not
require a steady state, is empirically verified. The velocity and density
profiles show large and varying mass fluxes, which are inconsistent with a
steady flow for a single dominant global spiral mode. We thus conclude that the
spiral arms cannot be in a quasi-steady state in any rotating frame, and/or
that out of plane motions may be significant.Comment: 50 pages, including 20 figures; Accepted for publication in ApJ. PDF
version with high resolution figures available at
http://www.astro.umd.edu/~shetty/Research
Recommended from our members
Sixteen years of bathymetry and waves at San Diego beaches.
Sustained, quantitative observations of nearshore waves and sand levels are essential for testing beach evolution models, but comprehensive datasets are relatively rare. We document beach profiles and concurrent waves monitored at three southern California beaches during 2001-2016. The beaches include offshore reefs, lagoon mouths, hard substrates, and cobble and sandy (medium-grained) sediments. The data span two energetic El Niño winters and four beach nourishments. Quarterly surveys of 165 total cross-shore transects (all sites) at 100 m alongshore spacing were made from the backbeach to 8 m depth. Monthly surveys of the subaerial beach were obtained at alongshore-oriented transects. The resulting dataset consists of (1) raw sand elevation data, (2) gridded elevations, (3) interpolated elevation maps with error estimates, (4) beach widths, subaerial and total sand volumes, (5) locations of hard substrate and beach nourishments, (6) water levels from a NOAA tide gauge (7) wave conditions from a buoy-driven regional wave model, and (8) time periods and reaches with alongshore uniform bathymetry, suitable for testing 1-dimensional beach profile change models
Dynamical Friction and the Distribution of Dark Matter in Barred Galaxies
We use fully self-consistent N-body simulations of barred galaxies to show
that dynamical friction from a dense dark matter halo dramatically slows the
rotation rate of bars. Our result supports previous theoretical predictions for
a bar rotating within a massive halo. On the other hand, low density halos,
such as those required for maximum disks, allow the bar to continue to rotate
at a high rate. There is somewhat meager observational evidence indicating that
bars in real galaxies do rotate rapidly and we use our result to argue that
dark matter halos must have a low central density in all high surface
brightness disk galaxies, including the Milky Way. Bars in galaxies that have
larger fractions of dark matter should rotate slowly, and we suggest that a
promising place to look for such candidate objects is among galaxies of
intermediate surface brightness.Comment: 6 pages, Latex, 3 figures, Accepted by Ap.J.L., revised copy,
includes an added paragrap
- …