We investigate the visibility of galactic bars and spiral structure in the
distant Universe by artificially redshifting 101 B-band CCD images of local
spiral galaxies from the Ohio State University Bright Spiral Galaxy Survey. Our
artificially redshifted images correspond to Hubble Space Telescope I-band
observations of the local galaxy sample seen at z=0.7, with integration times
matching those of both the very deep Northern Hubble Deep Field data, and the
much shallower Flanking Field observations. The expected visibility of galactic
bars is probed in two ways: (1) using traditional visual classification, and
(2) by charting the changing shape of the galaxy distribution in "Hubble
space", a quantitative two-parameter description of galactic structure that
maps closely on to Hubble's original tuning fork. Both analyses suggest that
over 2/3 of strongly barred luminous local spirals i.e. objects classified as
SB in the Third Reference Catalog) would still be classified as strongly barred
at z=0.7 in the Hubble Deep Field data. Under the same conditions, most weakly
barred spirals (classified SAB in the Third Reference Catalog) would be
classified as regular spirals. The corresponding visibility of spiral structure
is assessed visually, by comparing luminosity classifications for the
artificially redshifted sample with the corresponding luminosity
classifications from the Revised Shapley Ames Catalog. We find that for
exposures times similar to that of the Hubble Deep Field spiral structure
should be detectable in most luminous low-inclination spiral galaxies at z=0.7
in which it is present. [ABRIDGED]Comment: Accepted for publication in The Astronomical Journa