121 research outputs found
Diffusion and Mixing in Globular Clusters
Collisional relaxation describes the stochastic process with which a self-gravitating system near equilibrium evolves in phase-space due to the fluctuating gravitational field of the system. The characteristic timescale of this process is called the relaxation time. In this paper, we highlight the difference between two measures of the relaxation time in globular clusters: (1) the diffusion time with which the isolating integrals of motion (i.e., energy E and angular momentum magnitude L) of individual stars change stochastically and (2) the asymptotic timescale required for a family of orbits to mix in the cluster. More specifically, the former corresponds to the instantaneous rate of change of a star's E or L, while the latter corresponds to the timescale for the stars to statistically forget their initial conditions. We show that the diffusion timescales of E and L vary systematically around the commonly used half-mass relaxation time in different regions of the cluster by a factor of ∼10 and ∼100, respectively, for more than 20% of the stars. We define the mixedness of an orbital family at any given time as the correlation coefficient between its E or L probability distribution functions and those of the whole cluster. Using Monte Carlo simulations, we find that mixedness converges asymptotically exponentially with a decay timescale that is ∼10 times the half-mass relaxation time. © 2018. The American Astronomical Society. All rights reserved.
Interaction of Chemistry, Turbulence, and Shock Waves in Hypervelocity Flow
Significant progress was made in the third year of an interdisciplinary experimental, numerical and theoretical program to extend the state of knowledge
and understanding of the effects of chemical reactions in hypervelocity flows. The program addressed the key problems in aerothermochemistry that arise from.the interaction between the three strongly nonlinear effects:
Compressibility; vorticity; and chemistry. Important new results included:
• New data on transition in hypervelocity carbon dioxide flows
• New method of free-piston shock tunnel operation for lower enthalpy
• Accurate new method for computation of self-similar flows
• New experimental data on flap-induced separation at high enthalpy
• Insight into mechanisms active in reacting shear layers from comparison of experiment and computation
• Extensive new data from Rayleigh scattering diagnostics of supersonic shear layer
• Comparison of new experiments and computation of hypervelocity double-wedge flow yielded important differences
• Further first-principles computations of electron collision cross-sections of CO, N_2 and NO
• Good agreement between EFMO computation and experiment of flow over a cone at high incidence
• Extension of LITA diagnostics to high temperature
Domain Coarsening in Systems Far from Equilibrium
The growth of domains of stripes evolving from random initial conditions is
studied in numerical simulations of models of systems far from equilibrium such
as Rayleigh-Benard convection. The scaling of the size of the domains deduced
from the inverse width of the Fourier spectrum is studied for both potential
and nonpotential models. The morphology of the domains and the defect
structures are however quite different in the two cases, and evidence is
presented for a second length scale in the nonpotential case.Comment: 11 pages, RevTeX; 3 uufiles encoded postscript figures appende
DYNAMICAL FORMATION SIGNATURES OF BLACK HOLE BINARIES IN THE FIRST DETECTED MERGERS BY LIGO
The dynamical formation of stellar-mass black hole-black hole binaries has long been a promising source of gravitational waves for the Laser Interferometer Gravitational-Wave Observatory (LIGO). Mass segregation, gravitational focusing, and multibody dynamical interactions naturally increase the interaction rate between the most massive black holes in dense stellar systems, eventually leading them to merge. We find that dynamical interactions, particularly three-body binary formation, enhance the merger rate of black hole binaries with total mass M-tot roughly as proportional to M-tot beta, with beta greater than or similar to 4. We find that this relation holds mostly independently of the initial mass function, but the exact value depends on the degree of mass segregation. The detection rate of such massive black hole binaries is only further enhanced by LIGO's greater sensitivity to massive black hole binaries with M-tot less than or similar to 80 M-circle dot We find that for power-law BH mass functions dN/dM proportional to M-alpha with alpha <= 2, LIGO is most likely to detect black hole binaries with a mass twice that of the maximum initial black hole mass and a mass ratio near one. Repeated mergers of black holes inside the cluster result in about similar to 5% of mergers being observed between two and three times the maximum initial black hole mass. Using these relations, one may be able to invert the observed distribution to the initial mass function with multiple detections of merging black hole binaries
Detecting Triple Systems with Gravitational Wave Observations
The Laser Interferometer Gravitational Wave Observatory (LIGO) has recently discovered gravitational waves (GWs) emitted by merging black hole binaries. We examine whether future GW detections may identify triple companions of merging binaries. Such a triple companion causes variations in the GW signal due to: (1) the varying path length along the line of sight during the orbit around the center of mass; (2) relativistic beaming, Doppler, and gravitational redshift; (3) the variation of the light-travel time in the gravitational field of the triple companion; and (4) secular variations of the orbital elements. We find that the prospects for detecting a triple companion are the highest for low-mass compact object binaries which spend the longest time in the LIGO frequency band. In particular, for merging neutron star binaries, LIGO may detect a white dwarf or M-dwarf perturber at a signal-to-noise ratio of 8, if it is within 0.4 R⊙ distance from the binary and the system is within a distance of 100 Mpc. Stellar mass (supermassive) black hole perturbers may be detected at a factor 5 × (103×) larger separations. Such pertubers in orbit around a merging binary emit GWs at frequencies above 1 mHz detectable by the Laser Interferometer Space Antenna in coincidence
Wilson-Polchinski exact renormalization group equation for O(N) systems: Leading and next-to-leading orders in the derivative expansion
With a view to study the convergence properties of the derivative expansion
of the exact renormalization group (RG) equation, I explicitly study the
leading and next-to-leading orders of this expansion applied to the
Wilson-Polchinski equation in the case of the -vector model with the
symmetry . As a test, the critical exponents and as well as the subcritical exponent (and higher ones) are estimated
in three dimensions for values of ranging from 1 to 20. I compare the
results with the corresponding estimates obtained in preceding studies or
treatments of other exact RG equations at second order. The
possibility of varying allows to size up the derivative expansion method.
The values obtained from the resummation of high orders of perturbative field
theory are used as standards to illustrate the eventual convergence in each
case. A peculiar attention is drawn on the preservation (or not) of the
reparametrisation invariance.Comment: Dedicated to Lothar Sch\"afer on the occasion of his 60th birthday.
Final versio
Addendum-erratum to: ``Nonasymptotic critical behavior from field theory at d=3. II. The ordered-phase case. Phys. Rev. B35, 3585 (1987)
This note is intended to emphasize the existence of estimated Feynman
integrals in three dimensions for the free energy of the O(1) scalar theory up
to five loops which may be useful for other work. We also correct some
misprints of the published paper.Comment: One figure and one table added, some additions in the tex
Cosmological Insights into the Early Accretion of r-process-enhanced Stars. I. A Comprehensive Chemodynamical Analysis of LAMOST J1109+0754
- …
