14,036 research outputs found
Application of the EXtrapolated Efficiency Method (EXEM) to infer the gamma-cascade detection efficiency in the actinide region
The study of transfer-induced gamma-decay probabilities is very useful for
understanding the surrogate-reaction method and, more generally, for
constraining statistical-model calculations. One of the main difficulties in
the measurement of gamma-decay probabilities is the determination of the
gamma-cascade detection efficiency. In [Nucl. Instrum. Meth. A 700, 59 (2013)]
we developed the Extrapolated Efficiency Method (EXEM), a new method to measure
this quantity. In this work, we have applied, for the first time, the EXEM to
infer the gamma-cascade detection efficiency in the actinide region. In
particular, we have considered the 238U(d,p)239U and 238U(3He,d)239Np
reactions. We have performed Hauser-Feshbach calculations to interpret our
results and to verify the hypothesis on which the EXEM is based. The
determination of fission and gamma-decay probabilities of 239Np below the
neutron separation energy allowed us to validate the EXEM
Critical properties of Ising model on Sierpinski fractals. A finite size scaling analysis approach
The present paper focuses on the order-disorder transition of an Ising model
on a self-similar lattice. We present a detailed numerical study, based on the
Monte Carlo method in conjunction with the finite size scaling method, of the
critical properties of the Ising model on some two dimensional deterministic
fractal lattices with different Hausdorff dimensions. Those with finite
ramification order do not display ordered phases at any finite temperature,
whereas the lattices with infinite connectivity show genuine critical behavior.
In particular we considered two Sierpinski carpets constructed using different
generators and characterized by Hausdorff dimensions d_H=log 8/log 3 = 1.8927..
and d_H=log 12/log 4 = 1.7924.., respectively.
The data show in a clear way the existence of an order-disorder transition at
finite temperature in both Sierpinski carpets.
By performing several Monte Carlo simulations at different temperatures and
on lattices of increasing size in conjunction with a finite size scaling
analysis, we were able to determine numerically the critical exponents in each
case and to provide an estimate of their errors.
Finally we considered the hyperscaling relation and found indications that it
holds, if one assumes that the relevant dimension in this case is the Hausdorff
dimension of the lattice.Comment: 21 pages, 7 figures; a new section has been added with results for a
second fractal; there are other minor change
Models of granular ratchets
We study a general model of granular Brownian ratchet consisting of an
asymmetric object moving on a line and surrounded by a two-dimensional granular
gas, which in turn is coupled to an external random driving force. We discuss
the two resulting Boltzmann equations describing the gas and the object in the
dilute limit and obtain a closed system for the first few moments of the system
velocity distributions. Predictions for the net ratchet drift, the variance of
its velocity fluctuations and the transition rates in the Markovian limit, are
compared to numerical simulations and a fair agreement is observed.Comment: 15 pages, 4 figures, to be published on Journal of Statistical
Mechanics: Theory and Experiment
Fluctuation-Induced Casimir Forces in Granular Fluids
We have numerically investigated the behavior of driven non-cohesive granular
media and found that two fixed large intruder particles, immersed in a sea of
small particles, experience, in addition to a short range depletion force, a
long range repulsive force. The observed long range interaction is
fluctuation-induced and we propose a mechanism similar to the Casimir effect
that generates it: the hydrodynamic fluctuations are geometrically confined
between the intruders, producing an unbalanced renormalized pressure. An
estimation based on computing the possible Fourier modes explains the repulsive
force and is in qualitative agreement with the simulations.Comment: 4 pages, 3 figures. Accepted in Phys. Rev. Letter
Anomalous Aharonov--Bohm gap oscillations in carbon nanotubes
The gap oscillations caused by a magnetic flux penetrating a carbon nanotube
represent one of the most spectacular observation of the Aharonov-Bohm effect
at the nano--scale. Our understanding of this effect is, however, based on the
assumption that the electrons are strictly confined on the tube surface, on
trajectories that are not modified by curvature effects. Using an ab-initio
approach based on Density Functional Theory we show that this assumption fails
at the nano-scale inducing important corrections to the physics of the
Aharonov-Bohm effect. Curvature effects and electronic density spilled out of
the nanotube surface are shown to break the periodicity of the gap
oscillations. We predict the key phenomenological features of this anomalous
Aharonov-Bohm effect in semi-conductive and metallic tubes and the existence of
a large metallic phase in the low flux regime of Multi-walled nanotubes, also
suggesting possible experiments to validate our results.Comment: 7 figure
Vibrational spectrum of solid picene (C_22H_14)
Recently, Mitsuhashi et al., have observed superconductivity with transition
temperature up to 18 K in potassium doped picene (C22H14), a polycyclic
aromatic hydrocarbon compound [Nature 464 (2010) 76]. Theoretical analysis
indicate the importance of electron-phonon coupling in the superconducting
mechanisms of these systems, with different emphasis on inter- and
intra-molecular vibrations, depending on the approximations used. Here we
present a combined experimental and ab-initio study of the Raman and infrared
spectrum of undoped solid picene, which allows us to unanbiguously assign the
vibrational modes. This combined study enables the identification of the modes
which couple strongly to electrons and hence can play an important role in the
superconducting properties of the doped samples
Two-particle photoemission from strongly correlated systems: A dynamical-mean field approach
We study theoretically the simultaneous, photo-induced two-particle
excitations of strongly correlated systems on the basis of the Hubbard model.
Under certain conditions specified in this work, the corre- sponding transition
probability is related to the two-particle spectral function which we calculate
using three different methods: the dynamical-mean field theory combined with
quantum Monte Carlo (DMFT- QMC) technique, the first order perturbation theory
and the ladder approximations. The results are analyzed and compared for
systems at the verge of the metal-insulator transitions. The dependencies on
the electronic correlation strength and on doping are explored. In addition,
the account for the orbital degeneracy allows an insight into the influence of
interband correlations on the two particle excitations. A suitable experimental
realization is discussed.Comment: 25 pp, 10 figs. to be published in PR
Experimental determination of the quasi-projectile mass with measured neutrons
The investigation of the isospin dependence of multifragmentation reactions
relies on precise reconstruction of the fragmenting source. The criteria used
to assign free emitted neutrons, detected with the TAMU Neutron Ball, to the
quasi-projectile source are investigated in the framework of two different
simulation codes. Overall and source-specific detection efficiencies for
multifragmentation events are found to be model independent. The equivalence of
the two different methods used to assign experimentally detected charged
particles and neutrons to the emitting source is shown. The method used
experimentally to determine quasi-projectile emitted free neutron multiplicity
is found to be reasonably accurate and sufficiently precise as to allow for the
study of well-defined quasi-projectile sources.Comment: 10 pages, 8 figures. To be submitted to Nucl. Instr. and Meth.
Particle acoustic detection in gravitational wave aluminum resonant antennas
The results on cosmic rays detected by the gravitational antenna NAUTILUS
have motivated an experiment (RAP) based on a suspended cylindrical bar, which
is made of the same aluminum alloy as NAUTILUS and is exposed to a high energy
electron beam. Mechanical vibrations originate from the local thermal expansion
caused by warming up due to the energy lost by particles crossing the material.
The aim of the experiment is to measure the amplitude of the fundamental
longitudinal vibration at different temperatures. We report on the results
obtained down to a temperature of about 4 K, which agree at the level of about
10% with the predictions of the model describing the underlying physical
process.Comment: RAP experiment, 16 pages, 7 figure
- …
