52 research outputs found

    XRN2 Links Transcription Termination to DNA Damage and Replication Stress

    Get PDF
    We thank the Proteomics Core Facility. We thank Dr. Robert J. Crouch for providing us with GFP- and GFP-RNase H expression plasmids. We also thank Dr. Stephen H. Leppla for providing us with antibodies directed against RNA:DNA hybrids (R loops) (S9.6). We thank Novus Biologicals for generously providing XRN2 and Rrp45 antibodies. We also thank the members of the Boothman lab for critical reading of this manuscript.Author Summary Genomic instability is one of the primary causes of disease states, in particular cancer. One major cause of genomic instability is the formation of DNA double strand breaks (DSBs), which are one of the most dangerous types of DNA lesions the cell can encounter. If not repaired in a timely manner, one DSB can lead not only to cell death. If misrepaired, one DSB can lead to a hazardous chromosomal aberration, such as a translocation, that can eventually lead to cancer. The cell encounters and repairs DSBs that arise from naturally occurring cellular processes on a daily basis. A number of studies have demonstrated that aberrant structures that form during transcription under certain circumstances, in particular RNA:DNA hybrids (R loops), can lead to DSB formation and genomic instability, especially during DNA synthesis. Thus, it is important to understand how the cell responds and repairs transcription-mediated DNA damage in general and R loop-related DNA damage in particular. This paper both demonstrates that the XRN transcription termination factor links transcription and DNA damage, but also provides a better understanding of how the cell prevents transcription-related DNA damage.Yeshttp://www.plosgenetics.org/static/editorial#pee

    Privation et mesure du bien-ĂȘtre social.

    No full text

    Privation et mesure du bien-ĂȘtre social.

    No full text
    National audienc

    Expression of a functionally active human hepatic UDP-glucuronosyltransferase (UGT1A6) lacking the N-terminal signal sequence in the endoplasmic reticulum

    Get PDF
    AbstractUDP-glucuronosyltransferase 1A6 (UGT1A6) is a membrane glycoprotein of the endoplasmic reticulum playing a key role in drug metabolism. It is synthesized as a precursor with an N-terminal cleavable signal peptide. We demonstrate that deletion of the signal peptide sequence does not prevent membrane targeting and integration of this human isoform when expressed in an in vitro transcription-translation system, as shown by N-glycosylation, resistance to alkaline treatment and protease protection. Furthermore, UGT1A6 lacking the signal peptide (UGT1A6Δsp) was targeted to the endoplasmic reticulum in mammalian cells as shown by immunofluorescence microscopy and was catalytically active with kinetic constants for 4-methylumbelliferone glucuronidation similar to that of the wild-type. These results provide evidence that the signal peptide is not essential for the membrane assembly and activity of UGT1A6 suggesting that additional topogenic element(s) mediate(s) this process

    Expression of the semicarbazide-sensitive amine oxidase in articular cartilage: its role in terminal differentiation of chondrocytes in rat and human

    No full text
    International audienceObjective: Semicarbazide-sensitive amine oxidase (SSAO) catalyzes the oxidation of primary amines into ammonia and reactive species (hydrogen peroxide, aldehydes). It is highly expressed in mammalian tissues, especially in vascular smooth muscle cells and adipocytes, where it plays a role in cell differentiation and glucose transport. The study aims at characterizing the expression and the activity of SSAO in rat and human articular cartilage of the knee, and to investigate its potential role in chondrocyte terminal differentiation.Design: SSAO expression was examined by immunohistochemistry and western blot. Enzyme activity was measured using radiolabeled benzylamine as a substrate. Primary cell cultures of rat chondrocytes were treated for 21 days by a specific SSAO inhibitor, LJP 1586. Terminal chondrocyte differentiation markers were quantified by RT-qPCR. The basal and IL1ÎČ-stimulated glucose transport was monitored by the entrance of (3)[H]2-deoxyglucose in chondrocytes.Results: SSAO was expressed in chondrocytes of rat and human articular cartilage. SSAO expression was significantly enhanced during the hypertrophic differentiation of chondrocytes characterized by an increase in MMP13 and in alkaline phosphatase (ALP) expressions. SSAO inhibition delayed the late stage of chondrocyte differentiation without cell survival alteration and diminished the basal and IL1ÎČ-stimulated glucose transport. Interestingly, SSAO activity was strongly increased in human osteoarthritic cartilage.Conclusions: SSAO was expressed as an active form in rat and human cartilage. The results suggest the involvement of SSAO in rat chondrocyte terminal differentiation via a modulation of the glucose transport. In man, the increased SSAO activity detected in osteoarthritic patients may trigger hypertrophy and cartilage degeneration

    Soc. Choice Welf.

    No full text
    What would be the analogue of the Lorenz quasi-ordering when the variable of interest is continuous and of a purely ordinal nature? We argue that it is possible to derive such a criterion by substituting for the Pigou–Dalton transfer used in the standard inequality literature what we refer to as a Hammond progressive transfer. According to this criterion, one distribution of utilities is considered to be less unequal than another if it is judged better by both the lexicographic extensions of the maximin and the minimax, henceforth referred to as the leximin and the antileximax, respectively. If one imposes in addition that an increase in someone’s utility makes the society better off, then one is left with the leximin, while the requirement that society welfare increases as the result of a decrease of one person’s utility gives the antileximax criterion. Incidentally, the paper provides an alternative and simple characterisation of the leximin principle widely used in the social choice and welfare literature
    • 

    corecore