63,480 research outputs found
Entropy "floor" and effervescent heating of intracluster gas
Recent X-ray observations of clusters of galaxies have shown that the entropy
of the intracluster medium (ICM), even at radii as large as half the virial
radius, is higher than that expected from gravitational processes alone. This
is thought to be the result of nongravitational processes influencing the
physical state of the ICM. In this paper, we investigate whether heating by a
central AGN can explain the distribution of excess entropy as a function of
radius. The AGN is assumed to inject buoyant bubbles into the ICM, which heat
the ambient medium by doing pdV work as they rise and expand. Several authors
have suggested that this "effervescent heating" mechanism could allow the
central regions of clusters to avoid the ``cooling catastrophe''. Here we study
the effect of effervescent heating at large radii. Our calculations show that
such a heating mechanism is able to solve the entropy problem. The only free
parameters of the model are the time-averaged luminosity and the AGN lifetime.
The results are mainly sensitive to the total energy injected into the cluster.
Our model predicts that the total energy injected by AGN should be roughly
proportional to the cluster mass. The expected correlation is consistent with a
linear relation between the mass of the central black hole(s) and the mass of
the cluster, which is reminiscent of the Magorrian relation between the black
hole and bulge mass.Comment: accepted for Ap
Testing Foundations of Biological Scaling Theory Using Automated Measurements of Vascular Networks
Scientists have long sought to understand how vascular networks supply blood
and oxygen to cells throughout the body. Recent work focuses on principles that
constrain how vessel size changes through branching generations from the aorta
to capillaries and uses scaling exponents to quantify these changes. Prominent
scaling theories predict that combinations of these exponents explain how
metabolic, growth, and other biological rates vary with body size.
Nevertheless, direct measurements of individual vessel segments have been
limited because existing techniques for measuring vasculature are invasive,
time consuming, and technically difficult. We developed software that extracts
the length, radius, and connectivity of in vivo vessels from contrast-enhanced
3D Magnetic Resonance Angiography. Using data from 20 human subjects, we
calculated scaling exponents by four methods--two derived from local properties
of branching junctions and two from whole-network properties. Although these
methods are often used interchangeably in the literature, we do not find
general agreement between these methods, particularly for vessel lengths.
Measurements for length of vessels also diverge from theoretical values, but
those for radius show stronger agreement. Our results demonstrate that vascular
network models cannot ignore certain complexities of real vascular systems and
indicate the need to discover new principles regarding vessel lengths
QND Measurement of Large-Spin Ensembles by Dynamical Decoupling
Quantum non-demolition (QND) measurement of collective variables by
off-resonant optical probing has the ability to create entanglement and
squeezing in atomic ensembles. Until now, this technique has been applied to
real or effective spin one-half systems. We show theoretically that the
build-up of Raman coherence prevents the naive application of this technique to
larger spin atoms, but that dynamical decoupling can be used to recover the
ideal QND behavior. We experimentally demonstrate dynamical decoupling by using
a two-polarization probing technique. The decoupled QND measurement achieves a
sensitivity 5.7(6) dB better than the spin projection noise
Shock temperatures in anorthite glass
Temperatures of CaAl2Si2O8 (anorthite glass) shocked to pressures between 48 and 117 GPa were measured in the range from 2500 to 5600 K, using optical pyrometry techniques. The pressure dependence of the shock temperatures deviates significantly from predictions based on a single high pressure phase. At least three phase transitions, at pressures of about 55, 85, and 100 GPa and with transition energies of about 0.5 MJ/kg each (approximately 1.5 MJ/kg total) are required to explain the shock temperature data. The phase transition at 100 GPa can possibly be identified with the stishovite melting transition. Theoretical models of the time dependence of the thermal radiation from the shocked anorthite based on the geometry of the experiment and the absorptive properties of the shocked material yields good agreement with observations, indicating that it is not necessary to invoke intrinsic time dependences to explain the data in many cases
Range Queries on Uncertain Data
Given a set of uncertain points on the real line, each represented by
its one-dimensional probability density function, we consider the problem of
building data structures on to answer range queries of the following three
types for any query interval : (1) top- query: find the point in that
lies in with the highest probability, (2) top- query: given any integer
as part of the query, return the points in that lie in
with the highest probabilities, and (3) threshold query: given any threshold
as part of the query, return all points of that lie in with
probabilities at least . We present data structures for these range
queries with linear or nearly linear space and efficient query time.Comment: 26 pages. A preliminary version of this paper appeared in ISAAC 2014.
In this full version, we also present solutions to the most general case of
the problem (i.e., the histogram bounded case), which were left as open
problems in the preliminary versio
Circular 78
Historically, sales of exotic meats have been limited only by supply. As supply has increased in recent years, national
and international exotic game markets have grown rapidly. In the United States, growth
has occurred primarily in the restaurant section, although over-the-counter sales
have also increased.
The Alaskan reindeer industry is exploring the potential of expanding its meat sales as well as antler sales. Meat production increased from 320,000 pounds in 1987 to 432,000 pounds in 1988. This production increase is reflected in a 27
percent increase in dollar value (Alaska Crop and Livestock Reporting Service, 1989). Under current management procedures, potential meat production has been estimated at 500,000 pounds (Pearson and Lewis, 1988). Any future market expansion
is likely to occur in urban Alaska and in areas outside the state (Jones, 1988)
Partially incoherent gap solitons in Bose-Einstein condensates
We construct families of incoherent matter-wave solitons in a repulsive
degenerate Bose gas trapped in an optical lattice (OL), i.e., gap solitons, and
investigate their stability at zero and finite temperature, using the
Hartree-Fock-Bogoliubov equations. The gap solitons are composed of a coherent
condensate, and normal and anomalous densities of incoherent vapor co-trapped
with the condensate. Both intragap and intergap solitons are constructed, with
chemical potentials of the components falling in one or different bandgaps in
the OL-induced spectrum. Solitons change gradually with temperature. Families
of intragap solitons are completely stable (both in direct simulations, and in
terms of eigenvalues of perturbation modes), while the intergap family may have
a very small unstable eigenvalue (nevertheless, they feature no instability in
direct simulations). Stable higher-order (multi-humped) solitons, and bound
complexes of fundamental solitons are found too.Comment: 8 pages, 9 figures. Physical Review A, in pres
Rate-dependent morphology of Li2O2 growth in Li-O2 batteries
Compact solid discharge products enable energy storage devices with high
gravimetric and volumetric energy densities, but solid deposits on active
surfaces can disturb charge transport and induce mechanical stress. In this
Letter we develop a nanoscale continuum model for the growth of Li2O2 crystals
in lithium-oxygen batteries with organic electrolytes, based on a theory of
electrochemical non-equilibrium thermodynamics originally applied to Li-ion
batteries. As in the case of lithium insertion in phase-separating LiFePO4
nanoparticles, the theory predicts a transition from complex to uniform
morphologies of Li2O2 with increasing current. Discrete particle growth at low
discharge rates becomes suppressed at high rates, resulting in a film of
electronically insulating Li2O2 that limits cell performance. We predict that
the transition between these surface growth modes occurs at current densities
close to the exchange current density of the cathode reaction, consistent with
experimental observations.Comment: 8 pages, 6 fig
The transient response of global-mean precipitation to increasing carbon dioxide levels
The transient response of global-mean precipitation to an increase in atmospheric carbon dioxide levels of 1% yr(-1) is investigated in 13 fully coupled atmosphere-ocean general circulation models (AOGCMs) and compared to a period of stabilization. During the period of stabilization, when carbon dioxide levels are held constant at twice their unperturbed level and the climate left to warm, precipitation increases at a rate of similar to 2.4% per unit of global-mean surface-air-temperature change in the AOGCMs. However, when carbon dioxide levels are increasing, precipitation increases at a smaller rate of similar to 1.5% per unit of global-mean surface-air-temperature change. This difference can be understood by decomposing the precipitation response into an increase from the response to the global surface-temperature increase (and the climate feedbacks it induces), and a fast atmospheric response to the carbon dioxide radiative forcing that acts to decrease precipitation. According to the multi-model mean, stabilizing atmospheric levels of carbon dioxide would lead to a greater rate of precipitation change per unit of global surface-temperature change
- …
