149 research outputs found

    Mobile eye tracking applied as a tool for customer experience research in a crowded train station

    Get PDF
    Train stations have increasingly become crowded, necessitating stringent requirements in the design of stations and commuter navigation through these stations. In this study, we explored the use of mobile eye tracking in combination with observation and a survey to gain knowledge on customer experience in a crowded train station. We investigated the utilization of mobile eye tracking in ascertaining customers’ perception of the train station environment and analyzed the effect of a signalization prototype (visual pedestrian flow cues), which was intended for regulating pedestrian flow in a crowded underground passage. Gaze behavior, estimated crowd density, and comfort levels (an individual’s comfort level in a certain situation), were measured before and after the implementation of the prototype. The results revealed that the prototype was visible in conditions of low crowd density. However, in conditions of high crowd density, the prototype was less visible, and the path choice was influenced by other commuters. Hence, herd behavior appeared to have a stronger effect than the implemented signalization prototype in conditions of high crowd density. Thus, mobile eye tracking in combination with observation and the survey successfully aided in understanding customers’ perception of the train station environment on a qualitative level and supported the evaluation of the signalization prototype the crowded underground passage. However, the analysis process was laborious, which could be an obstacle for its practical use in gaining customer insights

    Avaliação do uso da morfometria como suporte para a elaboração de mapa pedológico na bacia do Ribeirão da Pedreira - DF.

    Get PDF
    ABSTRACT -This work applied a pedological mapping methodology, in the basin of Ribeirão da Pedreira ? DF, using the morfometric parameters in order to elaborate pedologic maps. The Digital Elevation Model (DEM) was made with 2 meters resolution. Derived from the DEM, were obtained morfometric parameters as: slope, contributing area and flow direction. The frequency histograms were made from slope and elevation in order to define the range of the classes of soils of the basin. The methodology showed good results, once it was able to distinguish the main classes of soils present in the study area.Na publicação: Adriana Reatto

    The Clacton Spear: the last one hundred years

    Get PDF
    In 1911 an eminent amateur prehistorian pulled the broken end of a pointed wooden shaft from Palaeolithic-age sediments at a seaside town in Essex. This artefact, still the earliest worked wood to be discovered in the world, became known as the Clacton Spear. Over the past 100 years it has variously been interpreted as a projectile weapon, a stave, a digging stick, a snow probe, a lance, a game stake and a prod to ward off rival scavengers. These perspectives have followed academic fashions, as the popular views of early hominins have altered. Since discovery the Clacton spear has also been replicated twice, has undergone physical transformations due to preservation treatments, and has featured in two public exhibitions. Within this article the changing context of the spear, its parallels, and all previous conservation treatments and their impacts are assessed.© 2015 Royal Archaeological Institute. This is an Accepted Manuscript of an article published by Taylor & Francis in The Archaeological Journal on 3rd March 2015, available online: http://www.tandfonline.com/doi.org/10.1080/00665983.2015.1008839.The attached document is the author(’s’) final accepted/submitted version of the journal article. You are advised to consult the publisher’s version if you wish to cite from it

    Frequency and Prognostic Impact of ALK Amplifications and Mutations in the European Neuroblastoma Study Group (SIOPEN) High-Risk Neuroblastoma Trial (HR-NBL1).

    Get PDF
    In neuroblastoma (NB), the ALK receptor tyrosine kinase can be constitutively activated through activating point mutations or genomic amplification. We studied ALK genetic alterations in high-risk (HR) patients on the HR-NBL1/SIOPEN trial to determine their frequency, correlation with clinical parameters, and prognostic impact. Diagnostic tumor samples were available from 1,092 HR-NBL1/SIOPEN patients to determine ALK amplification status (n = 330), ALK mutational profile (n = 191), or both (n = 571). Genomic ALK amplification (ALKa) was detected in 4.5% of cases (41 out of 901), all except one with MYCN amplification (MNA). ALKa was associated with a significantly poorer overall survival (OS) (5-year OS: ALKa [n = 41] 28% [95% CI, 15 to 42]; no-ALKa [n = 860] 51% [95% CI, 47 to 54], [P < .001]), particularly in cases with metastatic disease. ALK mutations (ALKm) were detected at a clonal level (> 20% mutated allele fraction) in 10% of cases (76 out of 762) and at a subclonal level (mutated allele fraction 0.1%-20%) in 3.9% of patients (30 out of 762), with a strong correlation between the presence of ALKm and MNA (P < .001). Among 571 cases with known ALKa and ALKm status, a statistically significant difference in OS was observed between cases with ALKa or clonal ALKm versus subclonal ALKm or no ALK alterations (5-year OS: ALKa [n = 19], 26% [95% CI, 10 to 47], clonal ALKm [n = 65] 33% [95% CI, 21 to 44], subclonal ALKm (n = 22) 48% [95% CI, 26 to 67], and no alteration [n = 465], 51% [95% CI, 46 to 55], respectively; P = .001). Importantly, in a multivariate model, involvement of more than one metastatic compartment (hazard ratio [HR], 2.87; P < .001), ALKa (HR, 2.38; P = .004), and clonal ALKm (HR, 1.77; P = .001) were independent predictors of poor outcome. Genetic alterations of ALK (clonal mutations and amplifications) in HR-NB are independent predictors of poorer survival. These data provide a rationale for integration of ALK inhibitors in upfront treatment of HR-NB with ALK alterations

    Another beauty of analytical chemistry: chemical analysis of inorganic pigments of art and archaeological objects

    Full text link
    [EN] This lecture text shows what fascinating tasks analytical chemists face in Art Conservation and Archaeology, and it is hoped that students reading it will realize that passions for science, arts or history are by no means mutually exclusive. This study describes the main analytical techniques used since the eighteenth century, and in particular, the instrumental techniques developed throughout the last century for analyzing pigments and inorganic materials, in general, which are found in cultural artefacts, such as artworks and archaeological remains. The lecture starts with a historical review on the use of analytical methods for the analysis of pigments from archaeological and art objects. Three different periods can be distinguished in the history of the application of the Analytical Chemistry in Archaeometrical and Art Conservation studies: (a) the "Formation'' period (eighteenth century1930), (b) the "Maturing'' period (1930-1970), and (c) the "Expansion'' period (1970-nowadays). A classification of analytical methods specifically established in the fields of Archaeometry and Conservation Science is also provided. After this, some sections are devoted to the description of a number of analytical techniques, which are most commonly used in routine analysis of pigments from cultural heritage. Each instrumental section gives the fundamentals of the instrumental technique, together with relevant analytical data and examples of applications.Financial support is gratefully acknowledged from Spanish ‘‘I+D+I MINECO’’ projects CTQ2011-28079-CO3-01 and CTQ2014-53736-C3-1-P supported by ERDEF funds.Domenech Carbo, MT.; Osete Cortina, L. (2016). Another beauty of analytical chemistry: chemical analysis of inorganic pigments of art and archaeological objects. ChemTexts. 2:1-50. https://doi.org/10.1007/s40828-016-0033-5S1502Wilks H (ed) (1987) Science for conservators: a conservation science teaching series. The Conservation Unit Museums and Galleries Commission, LondonSan AndrĂ©s Moya M, Viña Ferrer S (2004) Fundamentos de quĂ­mica y fĂ­sica para la conservaciĂłn y restauraciĂłn. SĂ­ntesis, MadridDomĂ©nech-CarbĂł MT (2013) Principios fĂ­sico-quĂ­micos de los materiales integrantes de los bienes culturales, Universitat PolitĂšcnica de ValĂšnciaMills JS, White R (1987) The organic chemistry of museum objects. Butterworths, London, pp 141–159Matteini M, Moles A (1991) La Quimica nel Restauro. I materiali dell’arte pittorica. Nardini, FirenzeGomez MA (1998) La RestauraciĂłn. Examen cientĂ­fico aplicado a la conservaciĂłn de obras de arte. CĂĄtedra, MadridTaft WS Jr, Mayer JW (2000) The science of paintings. Springer, New YorkAllen RO (ed) (1989) Archaeological chemistry IV; Advances in chemistry. American Chemical Society, Washington, DCAitken MJ (1990) Science-based dating in archaeology. Longman Archaeology Series, New YorkCiliberto E, Spoto G (eds) (2000) Modern analytical methods in art and archaeology. Wiley, New YorkMatteini M, Moles A (1986) Sciencia e Restauro. Metodi di Indagine, 2nd edn. Nardini, FirenzeOdegaard N, Carroll S, Zimmt W (2000) Material characterization tests for objects of art and archaeology. Archetype Publications, LondonDerrick MR, Stulik DC, Landry MJ (1999) Infrared spectroscopy in conservation science. Getty Conservation Institute, Los AngelesDomĂ©nech-CarbĂł A, DomĂ©nech-CarbĂł MT, Costa V (2009) Electrochemical methods in archaeometry, conservation and restoration. In: Scholz F (ed) Series: Monographs in electrochemistry. Springer, BerlinEdwards HGM, Chalmers JM (eds) (2005) Raman spectroscopy in archaeology and art history. The Royal Society of Chemistry, CambridgeLahanier C (1991) Scientific methods applied to the study of art objects. Mikrochim Acta II:245–254Bitossi G, Giorgi R, Salvadori BM, Dei L (2005) Spectroscopic techniques in cultural heritage conservation: a survey. Appl Spectrosc Rev 40:187–228Odlyha M (2000) Special feature: preservation of cultural heritage. The application of thermal analysis and other advanced analytical techniques to cultural objects. Thermochim Acta 365Feature Special (2003) Archaeometry. Meas Sci Technol 14:1487–1630Aitken MJ (1961) Physics and archaeology. Interscience, New YorkOlin JS (ed) (1982) Future directions in archaeometry. A round table. Smithsonian Institution Press, Washington, DCTownsend JH (2006) What is conservation science? Macromol Symp 238:1–10Nadolny J (2003) The first century of published scientific analyses of the materials of historical painting and polychromy, circa 1780–1880. Rev Conserv 4:39–51Montero Ruiz I, Garcia Heras M, LĂłpez-Romero E (2007) ArqueometrĂ­a: cambios y tendencias actuales. Trabajos de Prehistoria 64:23–40Fernandes Vieira G, Sias Coelho LJ (2011) ArqueometrĂ­a: Mirada histĂłrica de una ciencia en desarrollo. Revista CPC 13:107–133Rees-Jones SG (1990) Early experiments in pigment analysis. Stud Conserv 35:93–101Allen RO (1989) The role of the chemists in archaeological studies. In: Allen RO (ed) Archaeological chemistry IV. Advances in chemistry. American Chemical Society, Washington DC, pp 1–17Plesters J (1956) Cross-sections and chemical analysis of paint samples. Stud Conserv 2:110–157 and references thereinGilberg M (1987) Friedrich Rathgen: the father of modern archaeological conservation. J Am Inst Conserv 26:105–120Olin JS, Salmon ME, Olin CH (1969) Investigations of historical objects utilizing spectroscopy and other optical methods. Appl Optics 8:29–39Feller RL (1954) Dammar and mastic infrared analysis. Science 120:1069–1070Hall ET (1963) Methods of analysis (physical and microchemical) applied to paintings and antiquities. In: Thomson G (ed) Recent advances in conservation. Butterworths, London, pp 29–32Feigl F, Anger V (1972) Spot tests in inorganic analysis, 6th English edition, translated by Oesper RE. Elsevier, AmsterdamLocke DC, Riley OH (1970) Chemical analysis of paint samples using the Weisz ring oven technique. Stud Conserv 15:94–101Mairinger F, Schreiner M (1986) Analysis of supports, grounds and pigments. In: van Schoute R, Verougstracte-Marcq H (eds) PACT 13, Xth Anniversary Meeting of PACT Group. Louvain-la Neuve, pp 171–183 (and references therein)Vandenabeele P, Edwards HGM (2005) Overview: Raman spectrometry of artefacts. In: Edwards HGM, Chalmers JM (eds) Raman spectroscopy in archaeology and art history. The Royal Society of Chemistry, Cambridge, pp 169–178Tykot RH (2004) Scientific methods and applications to archaeological provenance studies. In: Proceedings of the International School of Physics “Enrico Fermi”. IOS Press, Amsterdam, pp 407–432DomĂ©nech-CarbĂł A, DomĂ©nech-CarbĂł MT, Valle-Algarra FM, Domine ME, Osete-Cortina L (2013) On the dehydroindigo contribution to Maya Blue. J Mat Sci 48:7171–7183Lovric M, Scholz F (1997) A model for the propagation of a redox reaction through microcrystals. J Solid State Electrochem 1:108–113Fitzgerald AG, Storey BE, Fabian D (1993) Quantitative microbeam analysis. Scottish Universities Sumer School in Physics and Institute of Physics Publishing, BristolDomĂ©nech-CarbĂł A (2015) Dating: an analytical task. ChemTexts 1:5Mairinger F, Schreiner M (1982) New methods of chemical analysis-a tool for the conservator. Science and Technology in the service of conservation, IIC, London, pp 5–13Malissa H, Benedetti-Pichler AA (1958) Anorganische qualitative Mikroanalyse. Springer, New YorkTertian R, Claisse F (1982) Principles of quantitative X-ray fluorescence analysis. Heyden, LondonMantler M, Schreiner M (2000) X-ray fluorescence spectrometry in art and archaeology. X-Ray Spectrom 29:3–17Scholz F (2015) Voltammetric techniques of analysis: the essentials. ChemTexts 1:17Inzelt G (2014) Crossing the bridge between thermodynamics and electrochemistry. From the potential of the cell reaction to the electrode potential. ChemTexts 1:2Milchev A (2016) Nucleation phenomena in electrochemical systems: thermodynamic concepts. ChemTexts 2:2Milchev A (2016) Nucleation phenomena in electrochemical systems: kinetic models. ChemTexts 2:4Seeber R, Zanardi C, Inzelt G (2015) Links between electrochemical thermodynamics and kinetics. ChemTexts 1:18Feist M (2015) Thermal analysis: basics, applications, and benefit. ChemTexts 1:8Stoiber RE, Morse SA (1994) Crystal identification with the polarizing microscope. Springer, BerlinGoldstein JI, Newbury DE, Echlin P, Joy DC, Lyman CE, Echlin P, Lifshin E, Sawyer L, Michael JR (2003) Scanning electron microscopy and X-ray microanalysis. Plenum Press, New YorkDomĂ©nech-CarbĂł A, DomĂ©nech-CarbĂł MT, MĂĄs-BarberĂĄ X (2007) Identification of lead pigments in nanosamples from ancient paintings and polychromed sculptures using voltammetry of nanoparticles/atomic force microscopy. Talanta 71:1569–1579Reedy TJ, Reedy ChL (1988) Statistical analysis in art conservation research. The Getty Conservation Institute, Los AngelesEastaugh N, Walsh V, Chaplin T, Siddall R (2004) Pigment compendium, optical microscopy of historical pigments. Elsevier, OxfordFeller RL, Bayard M (1986) Terminology and procedures used in the systematic examination of pigment particles with polarizing microscope. In: Feller RL (ed) Artists’ pigment. A handbook of their history and characteristics, vol 1. National Gallery of Art, Washington, pp 285–298Feller RL (ed) (1986) Artists’ pigment. A handbook of their history and characteristics, vol 1. National Gallery of Art, WashingtonRoy A (ed) (1993) Artists’ pigments. A handbook of their history and characteristics, vol 2. National Gallery of Art, WashingtonFitzHugh EW (ed) (1997) Artists’ pigments. A handbook of their history and characteristics, vol 3. National Gallery of Art, WashingtonBerrie BH (ed) (2007) Artists’ pigment. A handbook of their history and characteristics, vol 4. National Gallery of Art, WashingtonHaynes WN (ed) (2015) CRC handbook for physics and chemistry, 96th edn. Taylor and Francis Group, UKFiedler I, Bayard MA (1986) Cadmium yellows, oranges and reds. In: Feller RL (ed) Artists’ pigment. A handbook of their history and characteristics, vol 1. National Gallery of Art, Washington, pp 65–108Domenech-CarbĂł MT, de Agredos Vazquez, Pascual ML, Osete-Cortina L, Domenech A, Guasch-FerrĂ© N, Manzanilla LR, Vidal C (2012) Characterization of Pre-hispanic cosmetics found in a burial of the ancient city of Teotihuacan (Mexico). J Archaeol Sci 39:1043–1062MĂŒhlethaler B, Thissen J (1993) Smalt. In: Roy A (ed) Artists’ pigments. A handbook of their history and characteristics, vol 2. National Gallery of Art, Washington, pp 113–130Musumarra G, Fichera M (1998) Chemometrics and cultural heritage. Chemometr Intell Lab Syst 44:363–372Hochleitner B, Schreiner M, Drakopoulos M, Snigireva I, Snigirev A (2005) Analysis of paint layers by light microscopy, scanning electron microscopy and synchrotron induced X-ray micro-diffraction. In: Van Grieken R, Janssens K (eds) Cultural heritage conservation and environment impact assessment by non-destructive testing and micro-analysis. AA Balkema Publishers, London, pp 171–182Ć varcovĂĄ S, Kočí E, Bezdička P, Hradil D, HradilovĂĄ J (2010) Evaluation of laboratory powder X-ray micro-diffraction for applications in the fields of cultural heritage and forensic science. Anal Bioanal Chem 398:1061–1076Van de Voorde L, Vekemans B, Verhaeven E, Tack P, DeWolf R, Garrevoet J, Vandenabeele P, Vincze L (2015) Analytical characterization of a new mobile X-ray fluorescence and X-ray diffraction instrument combined with a pigment identification case study. Spectrochim Acta B 110:14–19Hochleitner B, Desnica V, Mantler M, Schreiner M (2003) Historical pigments: a collection analyzed with X-ray diffraction analysis and X-ray fluorescence analysis in order to create a database. Spectrochim Acta B 58:641–649Middleton PS, Ospitali F, Di Lonardo F (2005) Case study: painters and decorators: Raman spectroscopic studies of five Romano-British villas and the Domus Coiedii at Suasa, Italy. In: Edwards HGM, Chalmers JM (eds) Raman spectroscopy in archaeology and art history. The Royal Society of Chemistry, Cambridge, pp 97–120Helwig K (1993) Iron oxide pigments: natural and synthetic. In: Roy A (ed) Artists’ pigments. A handbook of their history and characteristics, vol 2. National Gallery of Art, Washington, pp 39–95Silva CE, Silva LP, Edwards HGM, de Oliveira LFC (2006) Diffuse reflection FTIR spectral database of dyes and pigments. Anal Bioanal Chem 386:2183–2191Hummel DO (ed) (1985) Atlas of polymer and plastic analysis, vol 1, Polymers, structures and spectra. Hanser VCH, MĂŒnichhttp://www.irug.org (consulted: 1 Feb 2016)http://www.ehu.es/udps/database/database.html (consulted: 1 Feb 2016)Burgio L, Clark RJH (2001) Library of FT-Raman spectra of pigments, minerals, pigment media and varnishes, and supplement to existing library of Raman spectra of pigments with visible excitation. Spectrochim Acta A 57:1491–1521http://www.chem.ucl.ac.uk/resources/raman/speclib.html (consulted: 1 Feb 2016)Madariaga JM, Bersani D (2012) Special feature: Raman spectroscopy in art and archaeology. J Raman Spectrosc 43(11):1523–1844http://minerals.gps.caltech.edu/ (consulted: 1 Feb 2016)http://www.rruff.info (consulted: 1 Feb 2016)Frost RL, Martens WN, Rintoul L, Mahmutagic E, Kloprogge JT (2002) J Raman Spectrosc 33:252–259Smith D (2005) Overwiew: jewellery and precious stones. In: Edwards HGM, Chalmers JM (eds) Raman spectroscopy in archaeology and art history. The Royal Society of Chemistry, Cambridge, pp 335–378Weiner S, Bar-Yosef O (1990) States of preservation of bones from prehistoric sites in the Near East: a survey. J Archaeol Sci 17:187–196Chu V, Regev L, Weiner S, Boaretto E (2008) Differentiating between anthropogenic calcite in plaster, ash and natural calcite using infrared spectroscopy: implications in archaeology. J Archaeol Sci 35:905–911Beniash E, Aizenberg J, Addadi L, Weiner S (1997) Amorphous calcium carbonate transforms into calcite during sea-urchin larval spicule growth. Proc R Soc Lond Ser B 264:461–465Regev L, Poduska KM, Addadi L, Weiner S, Boaretto E (2010) Distinguishing between calcites formed by different mechanisms using infrared spectrometry: archaeological applications. J Archaeol Sci 37:3022–3029Farmer C (ed) (1974) The infrared spectra of mineral, Monograph 4. Mineralogical Society, LondonMadejovĂĄ J, KečkĂ©ĆĄ J, PĂĄlkovĂĄ H, Komadel P (2002) Identification of components in smectite/kaolinite mixtures. Clay Miner 37:377–388Ć ucha V, ƚrodoƄ J, Clauer N, Elsass F, Eberl DD, Kraus I, MadejovĂĄ J (2001) Weathering of smectite and illite–smectite under temperate climatic conditions. Clay Miner 36:403–419DomĂ©nech-CarbĂł A, DomĂ©nech-CarbĂł MT, LĂłpez-LĂłpez F, Valle-Algarra FM, Osete-Cortina L, Arcos-Von Haartman E (2013) Electrochemical characterization of egyptian blue pigment in wall paintings using the voltammetry of microparticles methodology. Electroanalysis 25:2621–2630DomĂ©nech-CarbĂł MT, Edwards HGM, DomĂ©nech-CarbĂł A, del Hoyo-MelĂ©ndez JM, de la Cruz-Cañizares J (2012) An authentication case study: Antonio Palomino vs. Vicente Guillo paintings in the vaulted ceiling of the Sant Joan del Mercat church (Valencia, Spain). J Raman Spectrosc 43:1250–1259Lovric M, Scholz F (1999) A model for the coupled transport of ions and electrons in redox conductive microcrystals. J Solid State Electrochem 3:172–175Oldham KB (1998) Voltammetry at a three phase junction. J Solid State Electrochem 2:367–377DomĂ©nech A, DomĂ©nech-CarbĂł MT, Gimeno-Adelantado JV, Bosch-Reig F, SaurĂ­-Peris MC, SĂĄnchez-Ramos S (2001) Electrochemical identification of iron oxide pigments (earths) from pictorial microsamples attached to graphite/polyester composite electrodes. Analyst 126:1764–1772DomĂ©nech A, DomĂ©nech-CarbĂł MT, Moya-Moreno MCM, Gimeno-Adelantado JV, Bosch-Reig F (2000) Identification of inorganic pigments from paintings and polychromed sculptures immobilized into polymer film electrodes by stripping differential pulse voltammetry. Anal Chim Acta 407:275–289DomĂ©nech-CarbĂł A, DomĂ©nech-CarbĂł MT, Valle-Algarra FM, Gimeno-Adelantado JV, Osete-Cortina L, Bosch-Reig F (2016) On-line database of voltammetric data of immobilized particles for identifying pigments and minerals in archaeometry, conservation and restoration (ELCHER database). Anal Chim Acta 927:1–12http://www.elcher.info (consulted: 1 July 2016)Scholz F, DomĂ©nech-CarbĂł A (2010) Special feature: electrochemistry for conservation science. J Solid State Electrochem 14Domenech-CarbĂł A, Domenech-CarbĂł MT, Edwards HGM (2007) Identification of earth pigment by hierarchical cluster applied to solid state voltammetry. Application to a severely damaged frescoes. Electroanalysis 19:1890–1900Domenech-CarbĂł A, Domenech-CarbĂł MT, VĂĄzquez de Agredos-Pascual ML (2006) Dehydroindigo: a new piece into the Maya Blue puzzle from the voltammetry of microparticles approach. J Phys Chem B 110:6027–6039DomĂ©nech-CarbĂł A, DomĂ©nech-CarbĂł MT, VĂĄzquez de Agredos-Pascual ML (2007) Chemometric study of Maya Blue from the voltammetry of microparticles approach. Anal Chem 79:2812–2821DomĂ©nech-CarbĂł A, DomĂ©nech-CarbĂł MT, VĂĄzquez de Agredos-Pascual ML (2011) From Maya Blue to ‘Maya Yellow’: a connection between ancient nanostructured materials from the voltammetry of microparticles. Angew Chem Int Edit 50:5741–5744DomĂ©nech-CarbĂł A, DomĂ©nech-CarbĂł MT, Vidal-Lorenzo C, VĂĄzquez de Agredos-Pascual ML (2012) Insights into the Maya Blue Technology: greenish pellets from the ancient city of La Blanca. Angew Chem Int Ed 51:700–703DomĂ©nech-CarbĂł A, DomĂ©nech-CarbĂł MT, Osete-Cortina L, Montoya N (2012) Application of solid-state electrochemistry techniques to polyfunctional organic-inorganic hybrid materials: the Maya Blue problem. Micropor Mesopor Mater 166:123–130DomĂ©nech-CarbĂł MT, Osete-Cortina L, DomĂ©nech-CarbĂł A, VĂĄzquez de Agredos-Pascual ML, Vidal-Lorenzo C (2014) Identification of indigoid compounds present in archaeological Maya blue by pyrolysis-silylation-gas chromatography–mass spectrometry. J Anal Appl Pyrol 105:355–36

    Analysis of apoptosis methods recently used in Cancer Research and Cell Death & Disease publications

    Get PDF

    Table

    No full text
    • 

    corecore