62 research outputs found

    Self-Reported Functional Status as Predictor of Observed Functional Capacity in Subjects with Early Osteoarthritis of the Hip and Knee: A Diagnostic Study in the CHECK Cohort

    Get PDF
    Objectives Patients with hip or knee osteoarthritis (OA) may experience functional limitations in work settings. In the Cohort Hip and Cohort Knee study (CHECK) physical function was both self-reported and measured performance-based, using Functional Capacity Evaluation (FCE). Relations between self-reported scores on SF-36 and WOMAC (Western Ontario and McMaster Arthritis Index, function scales) and FCE performance were studied, and their diagnostic value for clinicians in predicting observed physical work limitations was assessed. Methods Ninety-two subjects scored physical function on SF-36 (scale 0–100, 100 indicating the best health level) and WOMAC (scale 0–68, 68 indicates maximum restriction) and performed the FCE. Correlations were calculated between all scores. Cross-tables were constructed using both questionnaires as diagnostic tests to identify work limitations. Subjects lifting <22.5 kg on the FCE-test ‘lifting-low’ were labeled as having physical work limitations. Diagnostic aspects at different cut-off scores for both questionnaires were analysed. Results Statistically significant correlations (Spearman’s ρ 0.34–0.49) were found between questionnaire scores and lifting and carrying tests. Results of a diagnostic cross-table with cut-off point <60 on SF-36 ‘physical functioning’ were: sensitivity 0.34, specificity 0.97 and positive predictive value (PV+) 0.95. Cut-off point ≄21 on WOMAC ‘function’ resulted in sensitivity 0.51, specificity 0.88 and PV+ 0.88. Conclusion Low self-reported function scores on SF-36 and WOMAC diagnosed subjects with limitations on the FCE. However, high scores did not guarantee performance without physical work limitations. These results are specific to the tested persons with early OA, in populations with a different prevalence of limitations, different diagnostic values will be found. FCE may be indicated to help clinicians to assess actual work capacity

    Studying protein–protein affinity and immobilized ligand–protein affinity interactions using MS-based methods

    Get PDF
    This review discusses the most important current methods employing mass spectrometry (MS) analysis for the study of protein affinity interactions. The methods are discussed in depth with particular reference to MS-based approaches for analyzing protein–protein and protein–immobilized ligand interactions, analyzed either directly or indirectly. First, we introduce MS methods for the study of intact protein complexes in the gas phase. Next, pull-down methods for affinity-based analysis of protein–protein and protein–immobilized ligand interactions are discussed. Presently, this field of research is often called interactomics or interaction proteomics. A slightly different approach that will be discussed, chemical proteomics, allows one to analyze selectivity profiles of ligands for multiple drug targets and off-targets. Additionally, of particular interest is the use of surface plasmon resonance technologies coupled with MS for the study of protein interactions. The review addresses the principle of each of the methods with a focus on recent developments and the applicability to lead compound generation in drug discovery as well as the elucidation of protein interactions involved in cellular processes. The review focuses on the analysis of bioaffinity interactions of proteins with other proteins and with ligands, where the proteins are considered as the bioactives analyzed by MS

    Does dietary tocopherol level affect fatty acid metabolism in fish?

    Get PDF
    Fish are a rich source of the n-3 polyunsaturated fatty acids (PUFA), particularly the highly unsaturated fatty acids (HUFA), eicosapentaenoic (EPA; 20:5n-3) and docosahexaenoic (DHA; 22:6n-3) acids, which are vital constituents for cell membrane structure and function, but which are also highly susceptible to attack by oxygen and other organic radicals. Resultant damage to PUFA in membrane phospholipids can have serious consequences for cell membrane structure and function, with potential pathological effects on cells and tissues. Physiological antioxidant protection involves both endogenous components, such as free radical scavenging enzymes, and exogenous dietary micronutrients including tocopherols and tocotrienols, the vitamin E-type compounds, widely regarded as the primary lipid soluble antioxidants. The antioxidant activities of tocopherols are imparted by their ability to donate their phenolic hydrogen atoms to lipid (fatty acid) free radicals resulting in the stabilisation of the latter and the termination of the lipid peroxidation chain reaction. However, tocopherols can also prevent PUFA peroxidation by acting as quenchers of singlet oxygen. Recent studies on marine fish have shown correlations between dietary and tissue PUFA/tocopherol ratios and incidence of lipid peroxidation as indicated by the levels of TBARS and isoprostanes. These studies also showed that feeding diets containing oxidised oil significantly affected the activities of liver antioxidant defence enzymes and that dietary tocopherol partially attenuated these effects. However, there is evidence that dietary tocopherols can affect fatty acid metabolism in other ways. An increase in membrane PUFA was observed in rats deficient in vitamin E. This was suggested to be due to over production of PUFA arising from increased activity of the desaturation/elongation mechanisms responsible for the synthesis of PUFA. Consistent with this, increased desaturation of 18:3n-3 and 20:5n-3 in hepatocytes from salmon fed diets deficient in tocopherol and/or astaxanthin has been observed. Although the mechanism is unclear, tocopherols may influence biosynthesis of n-3PUFA through alteration of cellular oxidation potential or “peroxide tone”

    Compartmentalization of Cyclic AMP Signalling Compartmentalized cAMP signalling is important in the regulation of Ca 2+ cycling in the heart

    No full text
    Abstract Co-ordinated myocyte handling of calcium is essential for efficient excitation-contraction coupling in the heart. The calcium cycling activity can be modulated by adrenergic stimulation and subsequent phosphorylation. Important functional consequences of phosphorylation include a greater influx of calcium through the voltage-dependent L-type Ca 2+ channel and a greater release of calcium from SR (sarcoplasmic reticulum) through the ryanodine R2 receptor. Furthermore, a more efficient reuptake through SERCA2 (sarcoplasmic/endoplasmic-reticulum Ca 2+ -ATPase 2) is a result of phosphorylation of its regulatory protein phospholamban. Compartmentalized signalling is important in this signalling cascade, and A-kinase-anchoring proteins play a central role by providing a high level of specificity. Contraction and relaxation of heart muscle cells are regulated by calcium (Ca 2+ ) cycling between the cytoplasm (sarcoplasm) and SR (sarcoplasmic reticulum

    Responsiveness to change of 10 physical tests used for patients with back pain

    No full text
    Background. Few studies have examined the responsiveness of physical tests. Objective. The purpose of this study was to explore the responsiveness of 10 physical tests used for patients with back pain in order to illuminate the significance of changes in scores. Design. Cross-sectional and longitudinal designs within a prospective cohort study were applied. Methods. Distribution-based and anchor-based methods were used. Ninety-eight patients (18-65 years of age) with long-lasting back pain were recruited consecutively at an outpatient spine clinic. Measurements. The participants were assessed using 10 physical tests and 2 questionnaires (Hannover Functional Ability Questionnaire and Roland-Morris Disability Questionnaire) at inclusion and after rehabilitation. Six predefined hypotheses for each test were examined regarding the association between changes in scores on the physical tests and the self-report measures of functioning and regarding the relationship of changes in scores on the physical tests and external anchors of important change. Results. Five physical tests demonstrated responsiveness by both distributionbased and anchor-based methods: spondylometry, lateral flexion test, fingertip-tofloor test, lift test, and Back Performance Scale (4 hypotheses confirmed). The minimal important change values were all within the range of the smallest detectable change for individual patients. Responsiveness by distribution-based methods only (3 hypotheses confirmed) was shown for the Biering-SĂžrensen test and the loaded reach test, whereas little evidence of responsiveness (1 hypothesis confirmed) was shown for the Global Physiotherapy Examination flexibility subscale, the Progressive Isoinertial Lifting Evaluation, and the 15-m (50-ft) walk test. Limitations. The smallest detectable change values were examined in a small sample of patients and need further exploration. Conclusions. Responsiveness varied among the 10 physical tests

    Both El Tor and classical cholera toxin bind blood group determinants

    No full text
    Cholera is a disease which shows a clear blood group profile, with blood group O individuals experiencing the most severe symptoms. For a long time, the cholera toxin has been suspected to be the main culprit of this blood group dependence. Here, we show that both El Tor and classical cholera toxin B-pentamers do indeed bind blood group determinants (with equal affinities), using Surface Plasmon Resonance and NMR spectroscopy. Together with previous structural data, this confirms our earlier hypothesis as to the molecular basis of cholera blood group dependence, with an interesting twist: the shorter blood group H-determinant characteristic of blood group O individuals binds with similar binding affinity compared to the A-determinant, however, with different kinetics
    • 

    corecore