5,519 research outputs found
To what extent does severity of loneliness vary among different mental health diagnostic groups: A cross-sectional study.
Loneliness is a common and debilitating problem in individuals with mental health disorders. However, our knowledge on severity of loneliness in different mental health diagnostic groups and factors associated with loneliness is poor, thus limiting the ability to target and improve loneliness interventions. The current study investigated the association between diagnoses and loneliness and explored whether psychological and social factors were related to loneliness. This study employed a cross-sectional design using data from a completed study which developed a measure of social inclusion. It included 192 participants from secondary, specialist mental health services with a primary diagnosis of psychotic disorders (n = 106), common mental disorders (n = 49), or personality disorders (n = 37). The study explored differences in loneliness between these broad diagnostic groups, and the relationship to loneliness of: affective symptoms, social isolation, perceived discrimination, and internalized stigma. The study adhered to the STROBE checklist for observational research. People with common mental disorders (MD = 3.94, CI = 2.15 to 5.72, P < 0.001) and people with personality disorders (MD = 4.96, CI = 2.88 to 7.05, P < 0.001) reported higher levels of loneliness compared to people with psychosis. These differences remained significant after adjustment for all psychological and social variables. Perceived discrimination and internalized stigma were also independently associated with loneliness and substantially contributed to a final explanatory model. The severity of loneliness varies between different mental health diagnostic groups. Both people with common mental disorders and personality disorders reported higher levels of loneliness than people with psychosis. Addressing perceived mental health discrimination and stigma may help to reduce loneliness
Single-cell lineage tracing in the mammary gland reveals stochastic clonal dispersion of stem/progenitor cell progeny.
The mammary gland undergoes cycles of growth and regeneration throughout reproductive life, a process that requires mammary stem cells (MaSCs). Whilst recent genetic fate-mapping studies using lineage-specific promoters have provided valuable insights into the mammary epithelial hierarchy, the true differentiation potential of adult MaSCs remains unclear. To address this, herein we utilize a stochastic genetic-labelling strategy to indelibly mark a single cell and its progeny in situ, combined with tissue clearing and 3D imaging. Using this approach, clones arising from a single parent cell could be visualized in their entirety. We reveal that clonal progeny contribute exclusively to either luminal or basal lineages and are distributed sporadically to branching ducts or alveoli. Quantitative analyses suggest that pools of unipotent stem/progenitor cells contribute to adult mammary gland development. Our results highlight the utility of tracing a single cell and reveal that progeny of a single proliferative MaSC/progenitor are dispersed throughout the epithelium.This work was supported by a grant from the Medical Research Council programme grant no. MR/J001023/1 (B.L-L. and C.J.W). F.M.D. was funded by a National Health and Medical Research Council CJ Martin Biomedical Fellowship (GNT1071074). O.B.H. was funded by a Wellcome Trust PhD studentship (105377/Z/14/Z)
Concerted changes in tropical forest structure and dynamics: evidence from 50 South American long-term plots
Several widespread changes in the ecology of old-growth tropical forests have recently been documented for the late twentieth century, in particular an increase in stem turnover (pan-tropical), and an increase in above-ground biomass (neotropical). Whether these changes are synchronous and whether changes in growth are also occurring is not known. We analysed stand-level changes within 50 long-term. monitoring plots from across South America spanning 1971-2002. We show that: (i) basal area (BA: sum of the cross-sectional areas of all trees in a plot) increased significantly over time (by 0.10 +/- 0.04 m(2) ha(-1) yr(-1), mean +/- 95% CI); as did both (ii) stand-level BA growth rates (sum of the increments of BA of surviving trees and BA of new trees that recruited into a plot); and (iii) stand-level BA mortality rates (sum of the cross-sectional areas of all trees that died in a plot). Similar patterns were observed on a per-stem basis: (i) stem density (number of stems per hectare; 1 hectare is 10(4) m(2)) increased significantly over time (0.94 +/- 0.63 stems ha(-1) yr(-1)); as did both (ii) stem recruitment rates; and (iii) stem mortality rates. In relative terms, the pools of BA and stem density increased by 0.38 +/- 0.15% and 0.18 +/- 0.12% yr(-1), respectively. The fluxes into and out of these pools-stand-level BA growth, stand-level BA mortality, stem recruitment and stem mortality rates-increased, in relative terms, by an order of magnitude more. The gain terms (BA growth, stem recruitment) consistently exceeded the loss terms (BA loss, stem mortality) throughout the period, suggesting that whatever process is driving these changes was already acting before the plot network was established. Large long-term increases in stand-level BA growth and simultaneous increases in stand BA and stem density imply a continent-wide increase in resource availability which is increasing net primary productivity and altering forest dynamics. Continent-wide changes in incoming solar radiation, and increases in atmospheric concentrations of CO2 and air temperatures may have increased resource supply over recent decades, thus causing accelerated growth and increased dynamism across the world's largest tract of tropical forest
Biome-specific effects of nitrogen and phosphorus on the photosynthetic characteristics of trees at a forest-savanna boundary in Cameroon
Journal ArticleThe final publication is available at Springer via http://dx.doi.org/10.1007/s00442-015-3250-5Photosynthesis/nutrient relationships of proximally growing forest and savanna trees were determined in an ecotonal region of Cameroon (Africa). Although area-based foliar N concentrations were typically lower for savanna trees, there was no difference in photosynthetic rates between the two vegetation formation types. Opposite to N, area-based P concentrations were—on average—slightly lower for forest trees; a dependency of photosynthetic characteristics on foliar P was only evident for savanna trees. Thus savanna trees use N more efficiently than their forest counterparts, but only in the presence of relatively high foliar P. Along with some other recent studies, these results suggest that both N and P are important modulators of woody tropical plant photosynthetic capacities, influencing photosynthetic metabolism in different ways that are also biome specific. Attempts to find simple unifying equations to describe woody tropical vegetation photosynthesis-nutrient relationships are likely to meet with failure, with ecophysiological distinctions between forest and savanna requiring acknowledgement.Natural Environment Research Council (NERC) TROBIT consortiumRoyal Society - University Research Fellowshi
An international network to monitor the structure, composition and dynamics of Amazonian forests (RAINFOR)
The Amazon basin is likely to be increasingly affected by environmental changes: higher temperatures, changes in precipitation, CO2 fertilization and habitat fragmentation. To examine the important ecological and biogeochemical consequences of these changes, we are developing an international network, RAINFOR, which aims to monitor forest biomass and dynamics across Amazonia in a co-ordinated fashion in order to understand their relationship to soil and climate. The network will focus on sample plots established by independent researchers, some providing data extending back several decades. We will also conduct rapid transect studies of poorly monitored regions. Field expeditions analysed local soil and plant properties in the first phase (2001–2002). Initial results suggest that the network has the potential to reveal much information on the continental-scale relations between forest and environment. The network will also serve as a forum for discussion between researchers, with the aim of standardising sampling techniques and methodologies that will enable Amazonian forests to be monitored in a coherent manner in the coming decades
J-type Carbon Stars in the Large Magellanic Cloud
A sample of 1497 carbon stars in the Large Magellanic Cloud has been observed
in the red part of the spectrum with the 2dF facility on the AAT. Of these, 156
have been identified as J-type (i.e. 13C-rich) carbon stars using a technique
which provides a clear distinction between J stars and the normal N-type carbon
stars that comprise the bulk of the sample, and yields few borderline cases. A
simple 2-D classification of the spectra, based on their spectral slopes in
different wavelength regions, has been constructed and found to be related to
the more conventional c- and j-indices, modified to suit the spectral regions
observed. Most of the J stars form a photometric sequence in the K - (J-K)
colour magnitude diagram, parallel to and 0.6 mag fainter than the N star
sequence. A subset of the J stars (about 13 per cent) are brighter than this J
star sequence; most of these are spectroscopically different from the other J
stars. The bright J stars have stronger CN bands than the other J stars and are
found strongly concentrated in the central regions of the LMC. Most of the
rather few stars in common with Hartwick and Cowley's sample of suspected CH
stars are J stars. Overall, the proportion of carbon stars identified as J
stars is somewhat lower than has been found in the Galaxy. The Na D lines are
weaker in the LMC J stars than in either the Galactic J stars or the LMC N
stars, and do not seem to depend on temperature.Comment: 19 pages, 21 figures, Latex; in press, MNRA
Association of the degree of adiposity and duration of obesity with measures of cardiac structure and function: The CARDIA study
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/109634/1/oby20865.pd
Mathematical and Statistical Techniques for Systems Medicine: The Wnt Signaling Pathway as a Case Study
The last decade has seen an explosion in models that describe phenomena in
systems medicine. Such models are especially useful for studying signaling
pathways, such as the Wnt pathway. In this chapter we use the Wnt pathway to
showcase current mathematical and statistical techniques that enable modelers
to gain insight into (models of) gene regulation, and generate testable
predictions. We introduce a range of modeling frameworks, but focus on ordinary
differential equation (ODE) models since they remain the most widely used
approach in systems biology and medicine and continue to offer great potential.
We present methods for the analysis of a single model, comprising applications
of standard dynamical systems approaches such as nondimensionalization, steady
state, asymptotic and sensitivity analysis, and more recent statistical and
algebraic approaches to compare models with data. We present parameter
estimation and model comparison techniques, focusing on Bayesian analysis and
coplanarity via algebraic geometry. Our intention is that this (non exhaustive)
review may serve as a useful starting point for the analysis of models in
systems medicine.Comment: Submitted to 'Systems Medicine' as a book chapte
A Multi-wavelength View of the TeV Blazar Markarian 421: Correlated Variability, Flaring, and Spectral Evolution
We report results from a multi-wavelength monitoring campaign on Mrk 421 over
the period of 2003-2004. The source was observed simultaneously at TeV and
X-ray energies, with supporting observations frequently carried out at optical
and radio wavelengths. The large amount of simultaneous data has allowed us to
examine the variability of Mrk 421 in detail. The variabilities are generally
correlated between the X-ray and gamma-ray bands, although the correlation
appears to be fairly loose. The light curves show the presence of flares with
varying amplitudes on a wide range of timescales both at X-ray and TeV
energies. Of particular interest is the presence of TeV flares that have no
coincident counterparts at longer wavelengths, because the phenomenon seems
difficult to understand in the context of the proposed emission models for TeV
blazars. We have also found that the TeV flux reached its peak days before the
X-ray flux during a giant flare in 2004. Such a difference in the development
of the flare presents a further challenge to the emission models. Mrk 421
varied much less at optical and radio wavelengths. Surprisingly, the normalized
variability amplitude in optical seems to be comparable to that in radio,
perhaps suggesting the presence of different populations of emitting electrons
in the jet. The spectral energy distribution (SED) of Mrk 421 is seen to vary
with flux, with the two characteristic peaks moving toward higher energies at
higher fluxes. We have failed to fit the measured SEDs with a one-zone SSC
model; introducing additional zones greatly improves the fits. We have derived
constraints on the physical properties of the X-ray/gamma-ray flaring regions
from the observed variability (and SED) of the source. The implications of the
results are discussed. (Abridged)Comment: 32 pages, 12 figures, to appear in Ap
- …
