7,525 research outputs found

    Mapping of IgE-binding regions on recombinant Cyn d 1, a major allergen from Bermuda Grass Pollen (BGP)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bermuda grass (<it>Cynodon dactylon</it>; subfamily Chloridoideae) is an important source of seasonal aeroallergens in warm tropical and sub-tropical areas worldwide. Improved approaches to diagnosis and therapy of allergic diseases require a thorough understanding of the structure and epitopes on the allergen molecule that are crucial for the antigen-antibody interaction. This study describes the localization of the human IgE-binding regions of the major group 1 pollen allergen Cyn d 1 from Bermuda grass.</p> <p>Methods</p> <p>A cDNA library was constructed from Bermuda grass pollen (BGP) using a Lambda gt11 expression vector. The gene encoding the Cyn d 1 allergen was isolated by screening the library with a mouse monoclonal antibody raised against grass group 1 allergen. In order to characterize the IgE epitopes on Cyn d 1, seven overlapping fragments and three deletion mutants were cloned and over-expressed in E. coli. The recombinant fragments and deletion mutants were evaluated for their comparative IgE reactivity with sera of non atopic individuals and grass pollen allergic patients by ELISA and a dot-blot assay.</p> <p>Results</p> <p>Analysis of IgE binding regions by overlapping fragments and deletion mutants identified two major allergenic regions corresponding to amino acids 120–170 and 224–244. Deletion of either or both regions led to a significant reduction in IgE binding, emphasizing the importance of the C-terminal region on Cyn d 1 in epitope-IgE interaction.</p> <p>Conclusion</p> <p>Anti-Cyn d 1 IgE antibodies from allergic human sera recognize two epitopes located at the C-terminal end of the molecule. These data will enable the design of improved diagnostic and therapeutic approaches for BGP hypersensitivity.</p

    Case report- a rare survival of 2,4-D (ethyl ester) ingestions

    Get PDF
    2,4-Dichlorophenoxyacetic acid (usually called 2,4-D) is a widely used systemic herbicide. Ingestion of 2,4 D (Ethyl Ester) is rarely reported. Ingestion of this substance leads to neurotoxicity, cardiotoxicity, hematotoxicity and nephrotoxicity. Previously reported cases describe toxicities of this agent with very high fatality, only 2 survived case reports are available. In our case the substance was identified readily and treatment started within hours of ingestion with prompt gastric lavage and forced alkaline diuresis. At the time of admission patient had already lost consciousness (i.e. neurotoxicity), patient had developed muscle fibrillations and fasciculations (i.e. myotoxicity) and during the hospital stay he got acute kidney injury (i.e. nephrotoxicity) but all toxicities recovered with treatment. Previously reported fatal cases had late identification of substance and only symptomatic supportive treatment was given whereas we used aggressive approach with forced diuresis and haemodialysis. We are reporting third survived case of 2,4-D (Ethyl Ester) poisoning and emphasizing key points in the management, early identification of substance, early institution of forced alkaline diuresis and use of renal function tests as prognostic marker with timely hemodialysis.

    Climate change amplifies plant invasion hotspots in Nepal

    Get PDF
    Aim Climate change has increased the risk of biological invasions, particularly by increasing the climatically suitable regions for invasive alien species. The distribution of many native and invasive species has been predicted to change under future climate. We performed species distribution modelling of invasive alien plants (IAPs) to identify hotspots under current and future climate scenarios in Nepal, a country ranked among the most vulnerable countries to biological invasions and climate change in the world. Location Nepal. Methods We predicted climatically suitable niches of 24 out of the total 26 reported IAPs in Nepal under current and future climate (2050 for RCP 6.0) using an ensemble of species distribution models. We also conducted hotspot analysis to highlight the geographic hotspots for IAPs in different climatic zones, land cover, ecoregions, physiography and federal states. Results Under future climate, climatically suitable regions for 75% of IAPs will expand in contrast to a contraction of the climatically suitable regions for the remaining 25% of the IAPs. A high proportion of the modelled suitable niches of IAPs occurred on agricultural lands followed by forests. In aggregation, both extent and intensity (invasion hotspots) of the climatically suitable regions for IAPs will increase in Nepal under future climate scenarios. The invasion hotspots will expand towards the high‐elevation mountainous regions. In these regions, land use is rapidly transforming due to the development of infrastructure and expansion of tourism and trade. Main conclusions Negative impacts on livelihood, biodiversity and ecosystem services, as well as economic loss caused by IAPs in the future, may be amplified if preventive and control measures are not immediately initiated. Therefore, the management of IAPs in Nepal should account for the vulnerability of climate change‐induced biological invasions into new areas, primarily in the mountains

    Estrogen treatment decreases matrix metalloproteinase (MMP)-9 in autoimmune demyelinating disease through estrogen receptor alpha (ERalpha).

    Get PDF
    Matrix metalloproteinases (MMPs) have a crucial function in migration of inflammatory cells into the central nervous system (CNS). Levels of MMP-9 are elevated in multiple sclerosis (MS) and predict the occurrence of new active lesions on magnetic resonance imaging (MRI). This translational study aims to determine whether in vivo treatment with the pregnancy hormone estriol affects MMP-9 levels from immune cells in patients with MS and mice with experimental autoimmune encephalomyelitis (EAE). Peripheral blood mononuclear cells (PBMCs) collected from three female MS patients treated with estriol and splenocytes from EAE mice treated with estriol, estrogen receptor (ER) alpha ligand, ERbeta ligand or vehicle were stimulated ex vivo and analyzed for levels of MMP-9. Markers of CNS infiltration were assessed using MRI in patients and immunohistochemistry in mice. Supernatants from PBMCs obtained during estriol treatment in female MS patients showed significantly decreased MMP-9 compared with pretreatment. Decreases in MMP-9 coincided with a decrease in enhancing lesion volume on MRI. Estriol treatment of mice with EAE reduced MMP-9 in supernatants from autoantigen-stimulated splenocytes, coinciding with decreased CNS infiltration by T cells and monocytes. Experiments with selective ER ligands showed that this effect was mediated through ERalpha. In conclusion, estriol acting through ERalpha to reduce MMP-9 from immune cells is one mechanism potentially underlying the estriol-mediated reduction in enhancing lesions in MS and inflammatory lesions in EAE

    Copper nanowire embedded hypromellose: An antibacterial nanocomposite film

    Get PDF
    The present work reports a novel antibacterial nanocomposite film comprising of copper nanowire impregnated biocompatible hypromellose using polyethylene glycol as a plasticiser. Detailed physico-chemical characterization using X-ray diffraction, Fourier transform infrared spectroscopy, UV–Visible spectroscopy and electron microscopy shows uniform dispersion of copper nanowire in the polymer matrix without any apparent oxidation. The film is flexible and shows excellent antibacterial activity against both Gram positive and negative bacteria at 4.8 wt% nanowire loading with MIC values of 400 µg/mL and 500 µg/mL for E. coli and S. aureus respectively. Investigation into the antibacterial mechanism of the nanocomposite indicates multiple pathways including cellular membrane damage caused by released copper ions and reactive oxygen species generation in the microbial cell. Interestingly, the film showed good biocompatibility towards normal human dermal fibroblast at minimum bactericidal concentration (MBC). Compared to the copper nanoparticles reported earlier in vitro studies, this low cytotoxicity of copper nanowires is due to the slow dissolution rate of the film and production of lower amount of ROS producing Cu2+ ions. Thus, the study indicates a strong potential for copper nanowire-based composites films in broader biomedical and clinical applications

    Significance of Grasslands in Protected Forest Areas

    Get PDF
    This paper describes case studies of grassland formation in the protected forest areas of the Indian state of Uttar Pradesh. This state has a total forest/tree cover of 8.84%, whereas the protected forest areas comprise only 2.54%.The protected areas constitute, one national park, eleven wildlife sanctuaries and thirteen bird sanctuaries

    Chemobrain: a critical review and causal hypothesis of link between cytokines and epigenetic reprogramming associated with chemotherapy

    Get PDF
    One consequence of modern cancer therapy is chemotherapy related cognitive dysfunction or “chemobrain”, the subjective experience of cognitive deficits at any point during or following chemotherapy. Chemobrain, a well-established clinical syndrome, has become an increasing concern because the number of long-term cancer survivors is growing dramatically. There is strong evidence that correlates changes in peripheral cytokines with the development of chemobrain in commonly used chemotherapeutic drugs for different types of cancer. However, the mechanisms by which these cytokines elicit change in the central nervous system are still unclear. In this review, we hypothesize that the administration of chemotherapy agents initiates a cascade of biological changes, with short-lived alterations in the cytokine milieu inducing persistent epigenetic alterations. These epigenetic changes lead to changes in gene expression, alterations in metabolic activity and neuronal transmission that are responsible for generating the subjective experience of cognition. This speculative but testable hypothesis should help to gain a comprehensive understanding of the mechanism underlying cognitive dysfunction in cancer patients. Such knowledge is critical to identify pharmaceutical targets with the potential to prevent and treat cancer-treatment related cognitive dysfunction and similar disorders.postprin

    Eight-band calculations of strained InAs/GaAs quantum dots compared with one, four, and six-band approximations

    Full text link
    The electronic structure of pyramidal shaped InAs/GaAs quantum dots is calculated using an eight-band strain dependent kp\bf k\cdot p Hamiltonian. The influence of strain on band energies and the conduction-band effective mass are examined. Single particle bound-state energies and exciton binding energies are computed as functions of island size. The eight-band results are compared with those for one, four and six bands, and with results from a one-band approximation in which m(r) is determined by the local value of the strain. The eight-band model predicts a lower ground state energy and a larger number of excited states than the other approximations.Comment: 8 pages, 7 figures, revtex, eps
    corecore