24 research outputs found

    A rotational Raman study under non-thermal conditions in a pulsed CO2 glow discharge

    Get PDF
    The implementation of \u27in situ\u27 rotational Raman spectroscopy is realized for a pulsed glow discharge in CO2 in the mbar range and is used to study the rotational temperature and molecular number densities of CO2, CO, and O2. The polarizability anisotropy of these molecules is required for extracting number densities from the recorded spectra and is determined for incident photons of 532 nm. The spatiotemporally-resolved measurements are performed in the same reactor and at equal discharge conditions (5-10 ms on-off cycle, 50 mA plasma current, 6.7 mbar pressure) as in recently published work employing \u27in situ\u27 Fourier transform infrared (FTIR) spectroscopy. The rotational temperature ranges from 394 K to 809 K from start to end of the discharge pulse and is constant over the length of the reactor. The discharge is demonstrated to be spatially uniform in gas composition, with a CO2 conversion factor of 0.15 ± 0.02. Rotational temperatures and molecular composition agree well with the FTIR results, while the spatial uniformity confirms the assumption made for the FTIR analysis of a homogeneous medium over the line-of-sight of absorption. Furthermore, the rotational Raman spectra of CO2 are related to vibrational temperatures through the vibrationally averaged nuclear spin degeneracy, which is expressed in the intensity ratio between even and odd numbered Raman peaks. The elevation of the odd averaged degeneracy above thermal conditions agrees well with the elevation of vibrational temperatures of CO2, acquired in the FTIR study

    N2-H2 capacitively coupled radio-frequency discharges at low pressure. Part I. Experimental results: Effect of the H2 amount on electrons, positive ions and ammonia formation

    Get PDF
    The mixing of N2 with H2 leads to very different plasmas from pure N2 and H2 plasma discharges. Numerous issues are therefore raised involving the processes leading to ammonia (NH3) formation. The aim of this work is to better characterize capacitively-coupled radiofrequency plasma discharges in N2 with few percents of H2 (up to 5%), at low pressure (0.3-1 mbar) and low coupled power (3-13 W). Both experimental measurements and numerical simulations are performed. For clarity, we separated the results in two complementary parts. The actual one (first part), presents the details on the experimental measurements, while the second focuses on the simulation, a hybrid model combining a 2D fluid module and a 0D kinetic module. Electron density is measured by a resonant cavity method. It varies from 0.4 to 5 109 cm-3, corresponding to ionization degrees from 2 10-8 to 4 10-7. Ammonia density is quantified by combining IR absorption and mass spectrometry. It increases linearly with the amount of H2 (up to 3 1013 cm-3 at 5% H2). On the contrary, it is constant with pressure, which suggests the dominance of surface processes on the formation of ammonia. Positive ions are measured by mass spectrometry. Nitrogen-bearing ions are hydrogenated by the injection of H2, N2H+ being the major ion as soon as the amount of H2 is >1%. The increase of pressure leads to an increase of secondary ions formed by ion/radical-neutral collisions (ex: N2H+, NH4 +, H3 +), while an increase of the coupled power favours ions formed by direct ionization (ex: N2 +, NH3 +, H2 +).N. Carrasco acknowledges the financial support of the European Research Council (ERC Starting Grant PRIMCHEM, Grant agreement no. 636829). A. Chatain acknowledges ENS Paris-Saclay Doctoral Program. A. Chatain is grateful to Gilles Cartry and Thomas Gautier for fruitful discussions on the MS calibration. L.L. Alves acknowledges the financial support of the Portuguese Foundation for Science and Technology (FCT) through the project UID/FIS/50010/2019. L. Marques and M. J. Redondo acknowledge the financial support of the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Funding UIDB/04650/2019

    Reproducibility of `COST Reference Microplasma Jets'

    Get PDF
    Atmospheric pressure plasmas have been ground-breaking for plasma science and technologies, due to their significant application potential in many fields, including medicinal, biological, and environmental applications. This is predominantly due to their efficient production and delivery of chemically reactive species under ambient conditions. One of the challenges in progressing the field is comparing plasma sources and results across the community and the literature. To address this a reference plasma source was established during the `Biomedical Applications of Atmospheric Pressure Plasmas' EU COST Action MP1101. It is crucial that reference sources are reproducible. Here, we present the reproducibility and variance across multiple sources through examining various characteristics, including: absolute atomic oxygen densities, absolute ozone densities, electrical characteristics, optical emission spectroscopy, temperature measurements, and bactericidal activity. The measurements demonstrate that the tested COST jets are mainly reproducible within the intrinsic uncertainty of each measurement technique

    Electron impact dissociation of CO<SUB>2</SUB>

    No full text
    International audienceSeveral CO&lt;SUB&gt;2&lt;/SUB&gt; electron impact dissociation cross sections are available in the literature, different in magnitude and threshold, hindering the understanding of CO&lt;SUB&gt;2&lt;/SUB&gt; dissociation mechanisms under gas discharges. This work reports the experimental validation of the electron impact CO&lt;SUB&gt;2&lt;/SUB&gt; dissociation cross section using two complementary methods: through the comparison of the measured rate coefficients with those derived from cross sections available in literature; and through the comparison of the experimental time evolution of the dissociation fraction with the simulations of a 0D model. A careful experimental approach was designed to avoid any influence from other dissociation mechanisms or chemical reactions. The experimental results match remarkably well the theoretical predictions from Polak and Slovetsky and establish the validity of the dissociation rate coefficients derived from their cross section. This validation supports the use of Polak and Slovetsky's cross section in any theoretical or modelling approach involving CO&lt;SUB&gt;2&lt;/SUB&gt; molecules under electrical discharges

    Excitation and relaxation of the asymmetric stretch mode of CO2 in a pulsed glow discharge

    No full text
    The excitation and relaxation of the vibrations of CO2 as well as the reduction of CO2 to CO are studied in a pulsed glow discharge. Two diagnostics are employed: (1) time-resolved in situ Fourier transform infrared spectroscopy and (2) spatiotemporally resolved in situ rotational Raman spectroscopy. Experiments are conducted within a pressure range of 1.3–6.7 mbar and a current range of 10–50 mA. In the afterglow, the rate of exponential decay from the asymmetric stretch temperature (T 3) to the rotational temperature (T rot) is found to be only dependent on T rot, in the conditions under study. The decay rate rho T 3 - T rot follows the relation rho T 3-T rot=388 s-1 exp(T rot - 273 K / 154 K). Pressure and varying concentrations of CO and (presumably) atomic oxygen did not show to be of significant influence. In the active part of the discharge the excitation of T 3 showed to be positively related to current and negatively to pressure. However, the contribution of current to vibrational excitation is ambiguous: the conversion of CO2 and therefore the fraction of CO in the discharge, is found to be strongly dependent on the current, with a conversion factor of 0.05–0.18 for 10–50 mA, while CO can contribute to the excitation through near-resonant collisions. A clear relation between the elevation of T 3 and the dissociation of CO2 could not be confirmed, though conversion peaks are observed in the near afterglow, which motivate future experiments on vibrational ladder-climbing directly after termination of the discharge

    Gas temperature in transient CO2 plasma measured by Raman scattering

    No full text
    Rotational Raman scattering on the vibrational ground state of CO 2 was performed to determine the gas temperature in narrow-gap dielectric barrier discharges (DBDs). The Raman spectrometer was equipped with a straightforward spectral filtering to mask ca. 30 cm −1 (0.85 nm) centered around the excitation wavelength of 532 nm. Linearisation of the observed transitions ( J = 18–42) was applied to retrieve gas temperatures in discharge gaps of 1 mm. The DBD was operated in pure CO 2 at atmospheric pressure and non-negligible gas heating of about 160 K was observed at 33 W injected power. Based on a simplified energy balance the gas temperature measurements were extrapolated to a broad range of injected plasma power values (0–60 W)
    corecore