35 research outputs found

    Tracking and imaging gamma ray experiment (TIGRE) for 1 to 100 MEV gamma ray astronomy

    Get PDF
    A large international collaboration from the high energy astrophysics community has proposed the Tracking and Imaging Gamma Ray Experiment (TIGRE) for future space observations. TIGRE will image and perform energy spectroscopy measurements on celestial sources of gamma rays in the energy range from 1 to 100 MeV. This has been a difficult energy range experimentally for gamma ray astronomy but is vital for the future considering the recent exciting measurements below 1 and above 100 MeV. TIGRE is both a double scatter Compton and gamma ray pair telescope with direct imaging of individual gamma ray events. Multi‐layers of Si strip detectors are used as Compton and pair converters CsI(Tl) scintillation detectors are used as a position sensitive calorimeter. Alternatively, thick GE strip detectors may be used for the calorimeter. The Si detectors are able to track electrons and positrons through successive Si layers and measure their directions and energy losses. Compton and pair events are completely reconstructed allowing each event to be imaged on the sky. TIGRE will provide an order‐of‐magnitude improvement in discrete source sensitivity in the 1 to 100 MeV energy range and determine spectra with excellent energy and excellent angular resolutions. It’s wide field‐of‐view of π sr permits observations of the entire sky for extended periods of time over the life of the mission

    The Advanced Compton Telescope

    Get PDF
    The Advanced Compton Telescope (ACT), the next major step in gamma-ray astronomy, will probe the fires where chemical elements are formed by enabling high-resolution spectroscopy of nuclear emission from supernova explosions. During the past two years, our collaboration has been undertaking a NASA mission concept study for ACT. This study was designed to (1) transform the key scientific objectives into specific instrument requirements, (2) to identify the most promising technologies to meet those requirements, and (3) to design a viable mission concept for this instrument. We present the results of this study, including scientific goals and expected performance, mission design, and technology recommendations

    Advection-Dominated Accretion and the Spectral States of Black Hole X-Ray Binaries: Application to Nova Muscae 1991

    Get PDF
    We present a self-consistent model of accretion flows which unifies four distinct spectral states observed in black hole X-ray binaries: quiescent, low, intermediate and high states. In the quiescent, low and intermediate states, the flow consists of an inner hot advection-dominated part extending from the black hole horizon to a transition radius and an outer thin disk. In the high state the thin disk is present at all radii. The model is essentially parameter-free and treats consistently the dynamics of the accretion flow, the thermal balance of the ions and electrons, and the radiation processes in the accreting gas. With increasing mass accretion rate, the model goes through a sequence of stages for which the computed spectra resemble very well observations of the four spectral states; in particular, the low-to-high state transition observed in black hole binaries is naturally explained as resulting from a decrease in the transition radius. We also make a tentative proposal for the very high state, but this aspect of the model is less secure. We test the model against observations of the soft X-ray transient Nova Muscae during its 1991 outburst. The model reproduces the observed lightcurves and spectra surprisingly well, and makes a number of predictions which can be tested with future observations.Comment: 68 pages, LaTeX, includes 1 table (forgotten in the previous version) and 14 figures; submitted to The Astrophysical Journa

    An Analysis and Improvement of the Predictive Control Integrating Component

    Get PDF
    integrator wind-up and, therefore, it is recommended that separate weighting be used with a modified integrating component predictive controller. The separate weighting also improves the designers intuition with respect to tuning the controller, significantly reducing the time required to generate desired closed loop responses. References Clarke, D. W., and Mohtadi, C, 1987, "Properties of Generalized Predictive Control," World Congress IFAC, Munich. Cutler, C. R., and Ramaker, B. L., 1979, "Dynamic Matrix Control-A Computer Control Algorithm," A.I.Ch.E., 86th National Meeting, Apr. Kurfess, T. R., Whitney, D. E., and Brown, M. L., 1988, "Verification of a Dynamic Grinding Model," ASME JOURNAL OF DYNAMIC SYSTEMS, MEAS-UREMENT, AND CONTROL, Dec., Vol. 110, Kurfess, T. R., 1989 "Predictive Control of a Robotic Weld Bead Grinding System," Ph.D. thesis, MIT Department of Mechanical Engineering. Kurfess, T. R., and Whitney, D. E., 1989, "Predictive Control of a Robotic Grinding System," Proceedings of the NMTBA Eastern Manufacturing Technology Conference, Hartford, CT, Oct. Kurfess, T. R., Whitney, D. E., 1989, "An Analysis and Improvement of the Predictive Control Integrating Component," ASME JOURNAL OF DYNAMIC SYS-TEMS, MEASUREMENT, AND CONTROL, submitted Dec. Kwakernaak, H., and Sivan, R., 1972 Introduction The usefulness of observers for real-time state estimation of linear dynamic systems based on measured system outputs is well known. Procedures for designing observers Another approach to robust state estimation has centered upon the fact that the estimated state is often used for feedback control. Hence, the criterion for observer design in these cases is to reduce the effect of modeling errors on the controlled system response. The work of The current work on robust state estimation using observers is motivated by the need to estimate pressure and temperature fields in thermoplastic injection molding processes, based on a few measurement locations in the mold cavity. Robustness of the estimate to errors in the process model is essential for this application given the complexity of the process. The initial use of the estimated pressure and temperature fields is for more effective process monitoring rather than for feedback control. The robustness of the state estimates obtained using observers, in the presence of system modeling error, is examined in this paper following the procedure of Determination of State Estimation Error Bound ‱ Consider the linear time-invariant system described by x{t)=Ax(t) + Bu(t) y(t)=Cx(t) (1) subject to the initial condition x(0) = x 0 where A, B, and C are (nxn), (nxp), and (mxn) matrices, respectively, and x(t), u{t), and y(t) are («xl), (pxl) and (m x 1) vectors, respectively. A full order observer is designed Copyright © 1993 by ASME based on this model to estimate the state x(t). The observer is described by x(t) =AJt(t) +B c u(t)+L(y(t) -y(t)) y(t)=Cx(t) (2) subject to the initial condition Note that modeling errors are permitted only in the A and B matrices and not in the C matrix. Let the estimation error be defined by Manipulation of subject to the initial condition e(0) = x(0)-x(0) = e 0 (5) The eigenvalues of the augmented system described by (1) and (4) are those of A and F c . We assume that the input u{f) is bounded in magnitude and that all the eigenvalues of A have negative real parts, thus ensuring that the estimation error is bounded if all the eigenvalues of F c also have negative real parts. The solution of where M being the modal matrix corresponding to F c and A a diagonal matrix with the eigenvalues of F c as the diagonal elements. Extension of the results obtained here to the case of repeated eigenvalues is relatively straightforward. Taking norms of both sides of Eq. (6), we get C[ being the real part of the observer pole farthest to the right in the complex plane, assumed to be negative here. Id represents the Euclidean norm of any (n x 1) vector v and IIP! represents the spectral norm of any (n x ri) matrix P above. Also, k(M) is the condition number of the (n x ri) matrix M and is equal to IIMII. HAT 1 ! Note that the expression within curly brackets on the right hand side of Eq. (7) depends on the observer eigenvalues and not on the eigenvectors associates with these eigenvalues. The dependence of the state estimation error bound on these eigenvectors is solely via the condition number k(M) of the modal matrix corresponding to F c . Therefore, for competing observer designs with the same eigenvalues, the only difference is in the modal matrix M. The other terms within the curly brackets would be identical for such competing designs. Equation The result obtained here that the eigenvectors corresponding to the observer eigenvalues be chosen to be as nearly mutually orthogonal as possible to reduce the norm of the state estimation error seems to be a natural extension of a result obtained by The suggested observer design guideline does not address the issue of observer eigenvalue selection despite the fact that eigenvalue selection affects the estimation error. Thus, selection of observer eigenvalues without reference to consequences for estimation error may well lead to more robust observer designs being overlooked. Futhermore, Eq. (7) provides only a bound on the estimation error norm. Therefore, it is possible that even if two observer designs differ only in their eigenvector selections, the actual state estimation error norm may in some cases be lower for the design which yields a higher value of k(M) and hence of the error bound. This is less likely to occur, however, if the difference in the values of k(M) for the competing designs is large. Finally, the results obtained here are valid only for cases where the C matrix is known exactly. The procedure for eigenvector selection and observer gain computation follows that of D'Azzo and Houpis (1988). Since the eigenvectors and reciprocal eigenvectors of a matrix are known to be mutually orthogonal, the procedure begins with selection of the reciprocal eigenvectors of F c to be as nearly orthogonal as possible and normalized to have Euclidean norms of unity. S(\ i ) = (A c T -\ i IC T ) for the n specified eigenvalues of F c . At this point in the observer design, the available freedom in eigenvector assignment is used to obtain as nearly mutually orthogonal a set of reciprocal eigenvectors as is possible. The observer gain matrix is then given by Example of Observer Design Consider one dimensional heat conduction in a bar insulated at both ends, governed by the equation where c is the thermal diffusivity of the bar and u(r, t) is the temperature at the location r and time t. It is assumed here that two temperature sensors are located on the bar, one at each end. Using the two measurements provided by the sensors, we need to estimate the temperature distribution in the bar. It is also assumed that the initial temperature distribution in the bar may be unknown. A third order lumped parameter approximation of the distributed parameter system is developed using the modal expansion method. This lumped parameter model is described in a normalized form by The elements of x are the normalized weighting factors on the responses of the corresponding modes, c' is a normalized version of c. It is assumed that the actual value of c' is 0.11, while for observer design, a value of 0.09 is assumed, indicating about 18 percent error. The elements of the C matrix depend only on the boundary conditions and the form of the partial differential Eq. and yields a condition number of the modal matrix of F c , after equilibration, of 3.43. In design 2, the reciprocal eigenvectors are chosen to get a poorer condition number of the modal matrix of F c , equal to 31.44. The observer gain matrix for this design is given by It should be noted here, as an indication of the restricted nature of the results of There is no guarantee, however, that the norm of the state estimation error will always be lower if the observer is designed as indicated here. In fact, if the initial state estimation error vector is dominated by one component, or if the errors in some of the parameters of the A and B matrices are dominant over the others, the relationship between the state estimation error norms may not be the same as the relationship between the error bounds indicated by Eq. Conclusions In this paper, we have derived an expression for an upper bound on the norm of the estimation error for an observer, in the presence of errors in the system A and B matrices and in the estimated initial conditions. It is shown that, in designing observers for multi-output systems using eigenstructure assignment, if the eigenvectors of the F c matrix are chosen to be as nearly mutually orthogonal as possible, a smaller bound on the state estimation error is obtained and thus may lead to more accurate state estimation. This is demonstrated by means of an example. The approach presented seems most appropriate in the absence of any a priori information on the initial state or the nature of the modeling errors. References Introduction This paper is concerned with the problem of identifying the input-output relationship of an unknown nonlinear dynamical system. Classical adaptive control of deterministic linear systems whose state variables are not all observed makes use of the separation principle (Narendra and Annaswamy, 1989) which says, in effect, that the problems of constructing an observer and parameter estimator can be considered separately. When the system is not observable it is not possible to construct an observer to recover the full state. Furthermore, when the system is nonlinear the separation principle no longer applies, and hence conventional adaptive identification and control techniques offer little hope of effective control of partially observed nonlinear systems. In this paper we show that these difficulties can be avoided by using neural networks instead. Neural networks are already successfully applied in control theory and system identification. In a recent paper, Narandra and Parthasarathy (1990) formalized a unified approach to solving nonlinear identification and control problems using multilayered neural networks. Chen (1990) applied multilayer neural network to nonlinear self-tuning tracking problems. Chu et al. (1990) implemented a Hopfield network on identifying time-varying linear systems. Various learning architectures for training neural net controller are outlined in Psaltis et al. (1988) and some interesting applications of neural networks in adaptive control can be found in Goldenthal an

    Gamma-Ray and Radio Observations of PSR B1509-58

    Get PDF
    Abstract : We report concurrent radio and gamma-ray observations of PSR B1509-58 carried out by the Parkes Radio Telescope and by the Burst and Transient Source Experiment (BATSE) and the Oriented Scintillation Spectrometer Experiment (OSSE) on the Compton Gamma Ray Observatory (CGRO-Gamma-ray light curves fitted at several energies between ~ 20-500 keV yield a phase offset with respect to the radio pulse that is independent of energy, with an average value 0.32 plus or minus 0.02. Although this value is larger by 0.07 than that reported by Kawai et al., the difference is not statistically significant (only~2 sigma) when account is taken of the uncertainty associated with their result. We briefly discuss the possibility that the energy-independence of the gamma-ray pulse phase is a signature of non-thermal radiation in the X-ray/gamma-ray range and the suggestion of a dependence of pulsar radio-gamma-ray phase offset on pulse period

    Dark Matter Candidates: A Ten-Point Test

    Full text link
    An extraordinarily rich zoo of non-baryonic Dark Matter candidates has been proposed over the last three decades. Here we present a 10-point test that a new particle has to pass, in order to be considered a viable DM candidate: I.) Does it match the appropriate relic density? II.) Is it {\it cold}? III.) Is it neutral? IV.) Is it consistent with BBN? V.) Does it leave stellar evolution unchanged? VI.) Is it compatible with constraints on self-interactions? VII.) Is it consistent with {\it direct} DM searches? VIII.) Is it compatible with gamma-ray constraints? IX.) Is it compatible with other astrophysical bounds? X.) Can it be probed experimentally?Comment: 29 pages, 12 figure

    OSSE Observations of the Soft Gamma Ray Continuum from the Galactic Plane at Longitude 95 Degrees

    Get PDF
    We present the results of OSSE observations of the soft gamma ray continuum emission from the Galactic plane at longitude 95 degrees. Emission is detected between 50 and 600 keV where the spectrum is fit well by a power law with photon index -2.6+-0.3 and flux (4.0+-0.5) 10^{-2} photons/s/cm^2/rad/MeV at 100 keV. This spectral shape in this range is similar to that found for the continuum emission from the inner Galaxy but the amplitude is lower by a factor of four. This emission is either due to unresolved and previously unknown point sources or it is of diffuse origin, or a combination of the two. Simultaneous observations with OSSE and smaller field of view instruments operating in the soft gamma ray energy band, such as XTE or SAX, would help resolve this issue. If it is primarily diffuse emission due to nonthermal electron bremsstrahlung, as is the >1 MeV Galactic ridge continuum, then the power in low energy cosmic ray electrons exceeds that of the nuclear component of the cosmic rays by an order of magnitude. This would have profound implications for the origin of cosmic rays and the energetics of the interstellar medium. Alternatively, if the emission is diffuse and thermal, then there must be a component of the interstellar medium at temperatures near 10^9 K.Comment: 11 pages, Latex, requires AASTEX macros and psfig.tex, 2 postscript figures, Accepted for publication in the Astrophysical Journal Letter

    Gamma ray astrophysics: the EGRET results

    Full text link
    Cosmic gamma rays provide insight into some of the most dynamic processes in the Universe. At the dawn of a new generation of gamma-ray telescopes, this review summarizes results from the Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory, the principal predecessor mission studying high-energy photons in the 100 MeV energy range. EGRET viewed a gamma-ray sky dominated by prominent emission from the Milky Way, but featuring an array of other sources, including quasars, pulsars, gamma-ray bursts, and many sources that remain unidentified. A central feature of the EGRET results was the high degree of variability seen in many gamma-ray sources, indicative of the powerful forces at work in objects visible to gamma-ray telescopes.Comment: 23 pages, 24 figure

    The Role of Radioactivities in Astrophysics

    Full text link
    I present both a history of radioactivity in astrophysics and an introduction to the major applications of radioactive abundances to astronomy

    Synthesis of the elements in stars: forty years of progress

    Full text link
    corecore