
integrator wind-up and, therefore, it is recommended that sep
arate weighting be used with a modified integrating component 
predictive controller. 

The separate weighting also improves the designers intuition 
with respect to tuning the controller, significantly reducing the 
time required to generate desired closed loop responses. 
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Robust State Estimation for Linear 
Systems 

S. S. Garimella1'2 and K. Srinivasan2 

Real-time state estimation of a linear dynamic system using 
an observer, in the presence of modeling errors in the system 
model used by the observer and uncertainty in the initial system 
states, is considered here. A guideline for designing observers 
for multioutput systems is established, based on an expression 
for an upper bound on the norm of the state estimation error 
derived in this paper. An example is presented to illustrate the 
usefulness of this guideline. 

Introduction 
The usefulness of observers for real-time state estimation of 

linear dynamic systems based on measured system outputs is 
well known. Procedures for designing observers (Luenberger, 
1971; Gopinath, 1971) are based on the system model used by 
the observer being accurate. The presence of errors in the 
system model used by the observer makes the robustness of 
the estimate state to these errors a significant consideration in 
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observer design. The effect of modeling error on the state 
estimate provided by the observers has been studied by Thau 
and Kestenbaum (1974) and bounds on state estimation errors 
obtained. However, no guidelines are available for observer 
design to reduce the state estimation error in cases where there 
is adequate freedom of design, for instance, for multi-output 
systems where eigenvectors are assignable even after eigenvalue 
assignment. Furuta et al. (1976) and Bhattacharyya (1980) have 
considered one class of robust observers, namely, reduced or
der observers which satisfy the condition of asymptotic con
vergence of the estimated state vector to the exact state vector 
despite parametric errors in the state space model of the system 
used by the observer. Such observers have been termed zero 
sensitivity observers or parameter invariant observers. Based 
on geometric considerations, conditions for the existence of 
such observers have been derived, and procedures for their 
design have been described. However, these conditions are 
highly restrictive in nature, because of the requirement of 
asymptotic convergence of the state estimates to their exact 
values despite modeling error. 

Another approach to robust state estimation has centered 
upon the fact that the estimated state is often used for feedback 
control. Hence, the criterion for observer design in these cases 
is to reduce the effect of modeling errors on the controlled 
system response. The work of Doyle and Stein (1979) on robust 
observers falls in this category. The observer is designed to 
achieve full-state loop transfer recovery, in this case the em
phasis being on recovery of the robustness of the full-state 
feedback design. Thus, the robustness of the controlled system 
to modeling errors is characterized by robustness measures of 
the full-state feedback design. Bongiorno (1973), Thau and 
Kestenbaum (1974) and Furuta et al. (1976) have also consid
ered the effect of modeling errors in the observer on different 
aspects of the overall controlled system performance. 

The current work on robust state estimation using observers 
is motivated by the need to estimate pressure and temperature 
fields in thermoplastic injection molding processes, based on 
a few measurement locations in the mold cavity. Robustness 
of the estimate to errors in the process model is essential for 
this application given the complexity of the process. The initial 
use of the estimated pressure and temperature fields is for 
more effective process monitoring rather than for feedback 
control. 

The robustness of the state estimates obtained using ob
servers, in the presence of system modeling error, is examined 
in this paper following the procedure of Thau and Kestenbaum 
(1974). Since the estimated state is to be used only for process 
monitoring in the application of interest, the consequences of 
modeling error in the observer for control action are not ex
amined. An upper bound on the norm of the state estimation 
error is obtained and shown to be related to the eigenstructure 
of the observers. Simple guidelines for observer eigenstructure 
assignment to lower the estimation error bound are offered 
and illustrated by an example. Concluding remarks are given 
at the end of the paper. 

Determination of State Estimation Error Bound 
• Consider the linear time-invariant system described by 

x{t)=Ax(t) + Bu(t) 

y(t)=Cx(t) (1) 
subject to the initial condition 

x(0) = x0 

where A, B, and C are (nxn), (nxp), and (mxn) matrices, 
respectively, and x(t), u{t), and y(t) are («xl), (pxl) and 
(m x 1) vectors, respectively. A full order observer is designed 
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based on this model to estimate the state x(t). The observer is 
described by (Luenberger, 1964) 

x(t) =AJt(t) +Bcu(t)+L(y(t) -y(t)) 

y(t)=Cx(t) (2) 

subject to the initial condition 

x(Q) = x0 

Note that modeling errors are permitted only in the A and B 
matrices and not in the C matrix. Let the estimation error be 
defined by 

e(t)=x(t)-x(t) (3) 

Manipulation of (1), (2), and (3) leads to 

e(0 = (Ac-LC)e(t) + (A -Ac)x(t) + (B-Bc)u(t) 

= Fce(t) + AAx(t) + ABu(t) (4) 

subject to the initial condition 

e(0) = x(0)-x(0) = e0 (5) 

The eigenvalues of the augmented system described by (1) and 
(4) are those of A and Fc. We assume that the input u{f) is 
bounded in magnitude and that all the eigenvalues of A have 
negative real parts, thus ensuring that the estimation error is 
bounded if all the eigenvalues of Fc also have negative real 
parts. 

The solution of (4) yields, for the case of distinct eigenvalues, 
(Brogan, 1982) 

e(t) = MeA'M~1eo+ \ Me^'-^M'^A^Xodr 
Jo 

+ \MeM'-T)M~\AA\ eAiT"T^)Bu(Tl)dTl 
Jo Jo 

+ &Bu{T))dT (6) 

where 

Fc = MAM~' and /'' = MeA 'AT' (7) 

M being the modal matrix corresponding to Fc and A a diagonal 
matrix with the eigenvalues of Fc as the diagonal elements. 
Extension of the results obtained here to the case of repeated 
eigenvalues is relatively straightforward. Taking norms of both 
sides of Eq. (6), we get 

le(Ol^HMII-llM-1ll(lleA 'll-le0l+ ( lleA('-T)ll- lAA^Xoldr 
ô 

+ f l le^ '^ ' l l- \AA ( ^-^BuiTiJdTi + ABu^ldr} 

= k(M){eCu. |e0l + ( eCl(t~T)- lAA^Xgldr 
Jo 

+ \ec^-T)-\AA\ eAiT-^)Bu(Ti)dTi + ABu(T)\dr} (7) 
Jo Jo 

11^11= ec'< (8) 

C[ being the real part of the observer pole farthest to the right 
in the complex plane, assumed to be negative here. Id rep
resents the Euclidean norm of any (n x 1) vector v and IIP! 
represents the spectral norm of any (n x ri) matrix P above. 
Also, k(M) is the condition number of the (n x ri) matrix M 
and is equal to IIMII. HAT1! (Wilkinson, 1965). The spectral 
norm IIPII is induced by and compatible with the Euclidean 
vector norm \v\ allowing us to write (Morari and Zafiriou, 
1989) 

lPt;l<HPll-li;l (9) 

Note that the expression within curly brackets on the right 
hand side of Eq. (7) depends on the observer eigenvalues and 
not on the eigenvectors associates with these eigenvalues. The 
dependence of the state estimation error bound on these ei
genvectors is solely via the condition number k(M) of the modal 
matrix corresponding to Fc. Therefore, for competing observer 
designs with the same eigenvalues, the only difference is in the 
modal matrix M. The other terms within the curly brackets 
would be identical for such competing designs. 

Equation (7) is 'the basis of the observer design guideline 
formulated here. Observer eigenvalues are selected to ensure 
more rapid decay of the estimation error transients as com
pared to the state transients (Luenberger, 1971; Gopinath, 
1971). For multi-output cases, eigenvalue selection does not 
determine observer gains uniquely. Equation (7) suggests that 
in these cases,the observer gains should be chosen to minimize 
the condition number k{M), in addition to yielding the desired 
eigenvalues. The condition number k(M) is minimized to unity 
if the eigenvectors of the matrix Fc, which are also the columns 
of the modal matrix M, form a mutually orthonormal set. In 
general, however, the eigenvectors corresponding to specified 
eigenvalues are not arbitrarily assignable. Consequently, the 
objective in eigenvector selection here should be to make them 
as nearly mutually orthogonal as possible, to reduce the es
timation error bound. Furthermore, since the condition num
ber of a matrix is almost invariably reduced by equilibration, 
that is, by scaling the elements of each eigenvector to get a 
Euclidean norm of nearly unity (Wilkinson, 1965), the columns 
of the modal matrix are equilibrated before the condition num
ber k(M) is determined. The bound on the estimation error 
norm is then lower than if the columns of the modal matrix 
were not equilibrated. 

The result obtained here that the eigenvectors corresponding 
to the observer eigenvalues be chosen to be as nearly mutually 
orthogonal as possible to reduce the norm of the state esti
mation error seems to be a natural extension of a result ob
tained by Gilbert (1984) relating to eigenvalue sensitivity. In 
the cited reference, Gilbert has shown that a Euclidean matrix 
norm of the sensitivity of the eigenvalues of a matrix with 
respect to its elements is minimized for all the eigenvalues if 
the eigenvectors of the matrix are mutually orthogonal. It 
should be noted that sensitivity of the observer eigenvalues is 
not of direct interest here since they depend only on model 
parameters and observer gains. The result presented here sug
gests, however, that the factors governing eigenvalue sensitivity 
of the matrix Fc are also significant in determining the size of 
the state estimation error though they are not exclusively so. 
Furthermore, the result presented here shows clearly the de
pendence of the state estimation error on other factors. 

The suggested observer design guideline does not address 
the issue of observer eigenvalue selection despite the fact that 
eigenvalue selection affects the estimation error. Thus, selec
tion of observer eigenvalues without reference to consequences 
for estimation error may well lead to more robust observer 
designs being overlooked. Futhermore, Eq. (7) provides only 
a bound on the estimation error norm. Therefore, it is possible 
that even if two observer designs differ only in their eigenvector 
selections, the actual state estimation error norm may in some 
cases be lower for the design which yields a higher value of 
k(M) and hence of the error bound. This is less likely to occur, 
however, if the difference in the values of k(M) for the com
peting designs is large. Finally, the results obtained here are 
valid only for cases where the C matrix is known exactly. 

The procedure for eigenvector selection and observer gain 
computation follows that of D'Azzo and Houpis (1988). Since 
the eigenvectors and reciprocal eigenvectors of a matrix are 
known to be mutually orthogonal, the procedure begins with 
selection of the reciprocal eigenvectors of Fc to be as nearly 
orthogonal as possible and normalized to have Euclidean norms 
of unity. Let w,T be the reciprocal eigenvector corresponding 
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Fig. 1 Estimation error when both the initial estimation error and the Fig. 3 Estimation error when only the observer model error is consid-
observer model error are considered ered 
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t ( S e c . ) 
Fig. 2 Estimation error when only the initial estimation error is con
sidered 

to the eigenvalue X,- of Fc. Then, it can be shown that the vector 

(10) 

(WjT £jT)T lies in the null space of the matrix 

S(\i) = (Ac
T-\iIC

T) 

for the n specified eigenvalues of Fc. At this point in the 
observer design, the available freedom in eigenvector assign
ment is used to obtain as nearly mutually orthogonal a set of 
reciprocal eigenvectors as is possible. The observer gain matrix 
is then given by 

LT= - (£ i £2 £„)(wi w2 w„)~l (11) 

Example of Observer Design 

Consider one dimensional heat conduction in a bar insulated 
at both ends, governed by the equation 

du d2u 

du 
dr 

(r, 0 = 0 r = 0 , 1 (12) 

where c is the thermal diffusivity of the bar and u(r, t) is the 
temperature at the location r and time t. It is assumed here 
that two temperature sensors are located on the bar, one at 
each end. Using the two measurements provided by the sensors, 
we need to estimate the temperature distribution in the bar. It 

is also assumed that the initial temperature distribution in the 
bar may be unknown. 

A third order lumped parameter approximation of the dis
tributed parameter system is developed using the modal ex
pansion method. This lumped parameter model is described 
in a normalized form by 

--Ax--

y = Cx = 

0 
0 -
0 

"1 
1 

0 0 
- c V 0 

0 - 4 c ' 

•sji V2" 

-V2 V2 

7T2 

X (13) 

The elements of x are the normalized weighting factors on the 
responses of the corresponding modes, c' is a normalized ver
sion of c. It is assumed that the actual value of c' is 0.11, 
while for observer design, a value of 0.09 is assumed, indicating 
about 18 percent error. The elements of the C matrix depend 
only on the boundary conditions and the form of the partial 
differential Eq. (12), and are assumed to be accurately known. 
The eigenvalues of the A matrix are 0, - 1.086 and -4.343 
rad/s. The observer eigenvalues are chosen to be - 3 . 5 , - 15 
and - 3 0 rad/s. 

Two observers are designed using the procedure described 
above. Design 1 has the observer gain matrix 

14.7760 14.7760 
4.9893 -4.9893 
0.1396 0.1396 

(14) 

and yields a condition number of the modal matrix of Fc, after 
equilibration, of 3.43. In design 2, the reciprocal eigenvectors 
are chosen to get a poorer condition number of the modal 
matrix of Fc, equal to 31.44. The observer gain matrix for this 
design is given by 

63.3193 63.3193 
L2= 0.9234 -0.9234 (15) 

-30.1205 -30.1205 

It should be noted here, as an indication of the restricted nature 
of the results of Furuta et al. (1976), that zero-sensitivity re
duced order observers of the type discussed in the cited ref
erence do not exit for this simple example. 

Figures 1-3 show the simulated time histories of the norm 
I e{t) I of the state estimation error for the two observer designs. 
The initial system state x0 is assumed to be (1.0 1.0 1.0)r. The 
error in the initial system state estimate is set to be (0.1 0.1 
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0. l ) r . Figure 1 represents the case where the effects of both 
the error in the estimated initial state and the observer model 
error are included. In Fig. 2, the observer model error is set 
to zero, the parameter c' in the system Eqs. (13) also being 
set to 0.09. Thus, only the effects of initial condition mismatch 
on state estimation error are included here. In Fig. 3, the system 
initial condition is assumed to be known exactly, the figure 
representing only the effects of the observer model error in
dicated before. In all the three cases indicated, the observer 
design 1 gives lower estimation error than the observer design 
2, in qualitative agreement with the relative magnitudes of the 
condition numbers of the modal matrices corresponding to the 
two Fc matrices. Similar results were obtained for a variety of 
initial state estimation errors and assumed model errors. The 
usefulness of the observer design guideline proposed in this 
paper is thus clearly illustrated. 

There is no guarantee, however, that the norm of the state 
estimation error will always be lower if the observer is designed 
as indicated here. In fact, if the initial state estimation error 
vector is dominated by one component, or if the errors in some 
of the parameters of the A and B matrices are dominant over 
the others, the relationship between the state estimation error 
norms may not be the same as the relationship between the 
error bounds indicated by Eq. (7). If the structure of the initial 
estimation error is known, such a priori information can be 
used to guide the observer eigenstructure assignment effectively 
to reduce the resulting state estimation error size (Andry et 
al., 1984). Similarly, if a priori information is available re
garding model errors, it can be used to modify the eigenstruc
ture assignment procedure appropriately. The results of the 
present paper are therefore primarily applicable to cases where 
such a priori information is not available. It is also expected 
that normalizing of the system state space equations such that 
the normalized outputs and state variables have maximum 
magnitudes of nearly unity prior to the observer design, en
hances the utility of the results presented here. 

Conclusions 
In this paper, we have derived an expression for an upper 

bound on the norm of the estimation error for an observer, 
in the presence of errors in the system A and B matrices and 
in the estimated initial conditions. It is shown that, in designing 
observers for multi-output systems using eigenstructure as
signment, if the eigenvectors of the Fc matrix are chosen to be 
as nearly mutually orthogonal as possible, a smaller bound on 
the state estimation error is obtained and thus may lead to 
more accurate state estimation. This is demonstrated by means 
of an example. The approach presented seems most appro
priate in the absence of any a priori information on the initial 
state or the nature of the modeling errors. 
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Neural Networks and Identification of 
Systems With Unobserved States 

C. J. Goh1 and Lyle Noakes1 

Consider a nonlinear control system, whose structure is not 
known (apart from the order of the system) and whose states 
are not observed. We observe the output of the system for a 
period of time using persistently exciting input, and use the 
observation to train a neural network emulator whose output 
approximates that of the original system. We point out that 
such an explicit dynamical relationship between the input and 
the output is useful for the purpose of construction of output 
feedback controller for nonlinear control systems. Speciali
zation of the method to linear systems allows swift convergence 
and parameter identification in some cases. 

1 Introduction 

This paper is concerned with the problem of identifying the 
input-output relationship of an unknown nonlinear dynamical 
system. Classical adaptive control of deterministic linear sys
tems whose state variables are not all observed makes use of 
the separation principle (Narendra and Annaswamy, 1989) 
which says, in effect, that the problems of constructing an 
observer and parameter estimator can be considered separately. 
When the system is not observable it is not possible to construct 
an observer to recover the full state. Furthermore, when the 
system is nonlinear the separation principle no longer applies, 
and hence conventional adaptive identification and control 
techniques offer little hope of effective control of partially 
observed nonlinear systems. In this paper we show that these 
difficulties can be avoided by using neural networks instead. 

Neural networks are already successfully applied in control 
theory and system identification. In a recent paper, Narandra 
and Parthasarathy (1990) formalized a unified approach to 
solving nonlinear identification and control problems using 
multilayered neural networks. Chen (1990) applied multilayer 
neural network to nonlinear self-tuning tracking problems. 
Chu et al. (1990) implemented a Hopfield network on iden
tifying time-varying linear systems. Various learning architec
tures for training neural net controller are outlined in Psaltis 
et al. (1988) and some interesting applications of neural net
works in adaptive control can be found in Goldenthal and 
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