84 research outputs found

    Cross-border virtual teams, as seen from applied psychology & applied economy perspective. A Case study of a cross-cultural teaching program

    Get PDF
    As communication becomes easier with the proliferation of ICT (Internet Communication Technology), more companies and individuals face the need and challenge of creating and facilitating virtual teams. Those are groups of people that contact each other only by the means of the internet, with no real-world physical face-to-face contact. Despite the numerous benefits, as low-to-non monetary costs and enormous creation flexibility, there are also many (psychological) risks, often not apparent from the outside. In the current paper we discuss the teaching program that was designed to foster virtual communication skills. We describe a project conducted simultaneously between Palacký University (Olomouc, CZ) and University of Opole (Opole, PL) in the summer term of 2015. We argue that such classes have a potential for individual and business development, provided the necessary preparations are made.Podczas gdy komunikacja staje się coraz łatwiejsza dzięki rozprzestrzenianiu się technologii komunikacji przez Internet (ICT), coraz więcej firm i osób staje przed wyzwaniem (współ)tworzenia i zwiększania efektywności wirtualnych zespołów. Chodzi tutaj o grupy ludzi kontaktujące się między sobą wyłącznie przez Internet, bez kontaktów w realnym świecie. Pomimo licznych zalet, do których należą między innymi niskie lub wręcz zerowe koszty finansowe oraz niezwykła elastyczność tworzenia, przed wirtualnymi zespołami istnieje też wiele wyzwań, nie widocznych z zewnątrz. W bieżącym artykule omawiamy zalety programu zajęć, zaprojektowanego do wzmacniania umiejętności komunikacji w wirtualnych zespołach. Opisujemy projekt dydaktyczny zrealizowany jednocześnie pomiędzy Uniwersytetem Palackiego (Olomouc, CZ) i Uniwersytetem Opolskim (Opole, PL) w semestrze letnim w roku 2015. Argumentujemy, iż taki program może przynieść korzyści zarówno z perspektyw jednostkowej, jak i biznesowej, pod warunkiem podjęcia odpowiednich przygotowań

    Authenticity and Psychological Safety: Building and Encouraging Talent Among Underrepresented Students in STEM

    Get PDF
    The Undergraduate Scholarships with Mathematics and Science Training, Exploration, and Research Program (US MASTER) is a STEM scholarship program funded by the United States National Science Foundation. It was implemented at an upper-Midwest institution to target and provide structured support to low-income, academically talented undergraduates in biology, chemistry, geography and geographic information science (GISc), environmental sciences, and physics and astrophysics. In addition to providing financial support, the program features an integrated approach to mentorship and advising consisting of an ongoing seminar course in which students engage in collaborative projects, research experiences with a faculty mentor, and targeted academic advising. As part of our assessment efforts, we interviewed student participants regarding their experiences. A consistent theme emerged regarding mentorship: in addition to providing access to professional socialization experiences and the facilitation of competency and performance, students reported that it was the ability to form close relationships based on personal authenticity and feelings of psychological safety and trust that provided the best scaffolding for success in a challenging STEM environment

    Low-metallicity massive single stars with rotation. II. Predicting spectra and spectral classes of chemically-homogeneously evolving stars

    Full text link
    Context. Metal-poor massive stars are supposed to be progenitors of certain supernovae, gamma-ray bursts and compact object mergers, potentially contributing to the early epochs of the Universe with their strong ionizing radiation. However, they remain mainly theoretical as individual spectroscopic observations of such objects have rarely been carried out below the metallicity of the SMC. Aims. This work aims at exploring what our state-of-the-art theories of stellar evolution combined with those of stellar atmospheres predict about a certain type of metal-poor (0.02 Z_{\odot}) hot massive stars, the chemically homogeneously evolving ones, called TWUIN stars. Methods. Synthetic spectra corresponding to a broad range in masses (20-130 M_{\odot}) and covering several evolutionary phases from the zero-age main-sequence up to the core helium-burning stage were computed. Results. We find that TWUIN stars show almost no emission lines during most of their {core hydrogen-burning} lifetimes. Most metal lines are completely absent, including nitrogen. During their core helium-burning stage, lines switch to emission and even some metal lines (oxygen and carbon, but still almost no nitrogen) show up. Mass loss and clumping play a significant role in line-formation in later evolutionary phases, particularly during core helium-burning. Most of our spectra are classified as an early O type giant or supergiant, and we find Wolf-Rayet stars of type WO in the core helium-burning phase. Conclusions. An extremely hot, early O type star observed in a low-metallicity galaxy could be the outcome of chemically homogeneous evolution - and therefore the progenitor of a long-duration gamma-ray burst or a type Ic supernova. TWUIN stars may play an important role in reionizing the Universe due to their being hot without showing prominent emission lines during the majority of their lifetimes.Comment: Accepted by Astronomy and Astrophysics. In Pres

    Interplay between pulsations and mass loss in the blue supergiant 55 Cygnus = HD 198 478

    Get PDF
    Context. Blue supergiant stars are known to display photometric and spectroscopic variability that is suggested to be linked to stellar pulsations. Pulsational activity in massive stars strongly depends on the star's evolutionary stage and is assumed to be connected with mass-loss episodes, the appearance of macroturbulent line broadening, and the formation of clumps in the wind. Aims. To investigate a possible interplay between pulsations and mass-loss, we carried out an observational campaign of the supergiant 55 Cyg over a period of five years to search for photospheric activity and cyclic mass-loss variability in the stellar wind. Methods. We modeled the H, He i, Si ii, and Si iii lines using the nonlocal thermal equilibrium atmosphere code FASTWIND and derived the photospheric and wind parameters. In addition, we searched for variability in the intensity and radial velocity of photospheric lines and performed a moment analysis of the line profiles to derive frequencies and amplitudes of the variations. Results. The Hα line varies with time in both intensity and shape, displaying various types of profiles: P Cygni, pure emission, almost complete absence, and double or multiple peaked. The star undergoes episodes of variable mass-loss rates that change by a factor of 1.7-2 on different timescales. We also observe changes in the ionization rate of Si ii and determine a multiperiodic oscillation in the He i absorption lines, with periods ranging from a few hours to 22.5 days. Conclusions. We interpret the photospheric line variations in terms of oscillations in p-, g-, and strange modes. We suggest that these pulsations can lead to phases of enhanced mass loss. Furthermore, they can mislead the determination of the stellar rotation. We classify the star as a post-red supergiant, belonging to the group of α Cyg variables.Facultad de Ciencias Astronómicas y GeofísicasInstituto de Astrofísica de La Plat

    X-Shooting ULLYSES: Massive stars at low metallicity. III. Terminal wind speeds of ULLYSES massive stars

    Full text link
    The winds of massive stars have an impact on stellar evolution and on the surrounding medium. The maximum speed reached by these outflows, the terminal wind speed, is a global wind parameter and an essential input for models of stellar atmospheres and feedback. With the arrival of the ULLYSES programme, a legacy UV spectroscopic survey with HST, we have the opportunity to quantify the wind speeds of massive stars at sub-solar metallicity (in the Large and Small Magellanic Clouds, 0.5Z and 0.2Z) at an unprecedented scale. We empirically quantify the wind speeds of a large sample of OB stars, including supergiants, giants, and dwarfs at sub-solar metallicity. Using these measurements, we investigate trends of terminal wind speed with a number of fundamental stellar parameters, namely effective temperature, metallicity, and surface escape velocity. We empirically determined the terminal wind speed for a sample of 149 OB stars in the Magellanic Clouds either by directly measuring the maximum velocity shift of the absorption component of the Civ 1548-1550 line profile, or by fitting synthetic spectra produced using the Sobolev with exact integration method. Stellar parameters were either collected from the literature, obtained using spectral-type calibrations, or predicted from evolutionary models. We find strong trends of terminal wind speed with effective temperature and surface escape speed when the wind is strong enough to cause a saturated P Cygni profile in Civ 1548-1550. We find evidence for a metallicity dependence on the terminal wind speed proportional to Z^0.22+-0.03 when we compared our results to previous Galactic studies. Our results suggest that effective temperature rather than surface escape speed should be used as a straightforward empirical prediction of terminal wind speed and that the observed metallicity dependence is steeper than suggested by earlier works.Comment: 21 pages, 16 figures, 8 tables. Accepted in A&

    Science with a small two-band UV-photometry mission II: Observations of stars and stellar systems

    Full text link
    We outline the impact of a small two-band UV-photometry satellite mission on the field of stellar physics, magnetospheres of stars, binaries, stellar clusters, interstellar matter, and exoplanets. On specific examples of different types of stars and stellar systems, we discuss particular requirements for such satellite missions in terms of specific mission parameters such as bandpass, precision, cadence, and mission duration. We show that such a mission may provide crucial data not only for hot stars that emit most of their light in UV, but also for cool stars, where UV traces their activity. This is important, for instance, for exoplanetary studies, because the level of stellar activity influences habitability. While the main asset of the two-band UV mission rests in time-domain astronomy, an example of open clusters proves that such a mission would be important also for the study of stellar populations. Properties of the interstellar dust are best explored when combining optical and IR information with observations in UV. It is well known that dust absorbs UV radiation efficiently. Consequently, we outline how such a UV mission can be used to detect eclipses of sufficiently hot stars by various dusty objects and study disks, rings, clouds, disintegrating exoplanets or exoasteroids. Furthermore, UV radiation can be used to study the cooling of neutron stars providing information about the extreme states of matter in the interiors of neutron stars and used for mapping heated spots on their surfaces.Comment: Submitted to Space Science Review

    Quick Ultra-VIolet Kilonova surveyor (QUVIK)

    Full text link
    We present a near-UV space telescope on a ~70kg micro-satellite with a moderately fast repointing capability and a near real-time alert communication system that has been proposed in response to a call for an ambitious Czech national mission. The mission, which has recently been approved for Phase 0, A, and B1 study shall measure the brightness evolution of kilonovae, resulting from mergers of neutron stars in the near-UV band and thus it shall distinguish between different explosion scenarios. Between the observations of transient sources, the satellite shall perform observations of other targets of interest, a large part of which will be chosen in open competition.Comment: SPIE Astronomical Telescopes and Instrumentatio

    Overview of the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES)

    Get PDF
    Substantial uncertainties still exist in the scientific understanding of the possible interactions between urban and natural (biogenic) emissions in the production and transformation of atmospheric aerosol and the resulting impact on climate change. The US Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program's Carbonaceous Aerosol and Radiative Effects Study (CARES) carried out in June 2010 in Central Valley, California, was a comprehensive effort designed to improve this understanding. The primary objective of the field study was to investigate the evolution of secondary organic and black carbon aerosols and their climate-related properties in the Sacramento urban plume as it was routinely transported into the forested Sierra Nevada foothills area. Urban aerosols and trace gases experienced significant physical and chemical transformations as they mixed with the reactive biogenic hydrocarbons emitted from the forest. Two heavily-instrumented ground sites – one within the Sacramento urban area and another about 40 km to the northeast in the foothills area – were set up to characterize the evolution of meteorological variables, trace gases, aerosol precursors, aerosol size, composition, and climate-related properties in freshly polluted and "aged" urban air. On selected days, the DOE G-1 aircraft was deployed to make similar measurements upwind and across the evolving Sacramento plume in the morning and again in the afternoon. The NASA B-200 aircraft, carrying remote sensing instruments, was also deployed to characterize the vertical and horizontal distribution of aerosols and aerosol optical properties within and around the plume. This overview provides: (a) the scientific background and motivation for the study, (b) the operational and logistical information pertinent to the execution of the study, (c) an overview of key observations and initial findings from the aircraft and ground-based sampling platforms, and (d) a roadmap of planned data analyses and focused modeling efforts that will facilitate the integration of new knowledge into improved representations of key aerosol processes and properties in climate models.United States. Dept. of Energy. Atmospheric System Research Program (Contract DE-AC06-76RLO 1830)United States. National Oceanic and Atmospheric AdministrationUnited States. National Aeronautics and Space Administration. HQ Science Mission Directorate Radiation Sciences ProgramUnited States. National Aeronautics and Space Administration. CALIPSO ProgramUnited States. Dept. of Energy. Atmospheric Radiation Measurement Program (Interagency Agreement No. DE-AI02-05ER63985
    corecore