735 research outputs found

    An elastoplastic theory of dislocations as a physical field theory with torsion

    Full text link
    We consider a static theory of dislocations with moment stress in an anisotropic or isotropic elastoplastical material as a T(3)-gauge theory. We obtain Yang-Mills type field equations which express the force and the moment equilibrium. Additionally, we discuss several constitutive laws between the dislocation density and the moment stress. For a straight screw dislocation, we find the stress field which is modified near the dislocation core due to the appearance of moment stress. For the first time, we calculate the localized moment stress, the Nye tensor, the elastoplastic energy and the modified Peach-Koehler force of a screw dislocation in this framework. Moreover, we discuss the straightforward analogy between a screw dislocation and a magnetic vortex. The dislocation theory in solids is also considered as a three-dimensional effective theory of gravity.Comment: 38 pages, 6 figures, RevTe

    Stress-free states of continuum dislocation fields: Rotations, grain boundaries, and the Nye dislocation density tensor

    Full text link
    We derive general relations between grain boundaries, rotational deformations, and stress-free states for the mesoscale continuum Nye dislocation density tensor. Dislocations generally are associated with long-range stress fields. We provide the general form for dislocation density fields whose stress fields vanish. We explain that a grain boundary (a dislocation wall satisfying Frank's formula) has vanishing stress in the continuum limit. We show that the general stress-free state can be written explicitly as a (perhaps continuous) superposition of flat Frank walls. We show that the stress-free states are also naturally interpreted as configurations generated by a general spatially-dependent rotational deformation. Finally, we propose a least-squares definition for the spatially-dependent rotation field of a general (stressful) dislocation density field.Comment: 9 pages, 3 figure

    Autoparallels From a New Action Principle

    Full text link
    We present a simpler and more powerful version of the recently-discovered action principle for the motion of a spinless point particle in spacetimes with curvature and torsion. The surprising feature of the new principle is that an action involving only the metric can produce an equation of motion with a torsion force, thus changing geodesics to autoparallels. This additional torsion force arises from a noncommutativity of variations with parameter derivatives of the paths due to the closure failure of parallelograms in the presence of torsionComment: Paper in src. Author Information under http://www.physik.fu-berlin.de/~kleinert/institution.html Read paper directly with Netscape under http://www.physik.fu-berlin.de/~kleinert/kleiner_re243/preprint.htm

    Coupling techniques for nonlinear hyperbolic equations. III. The well-balanced approximation of thick interfaces

    Full text link
    We continue our analysis of the coupling between nonlinear hyperbolic problems across possibly resonant interfaces. In the first two parts of this series, we introduced a new framework for coupling problems which is based on the so-called thin interface model and uses an augmented formulation and an additional unknown for the interface location; this framework has the advantage of avoiding any explicit modeling of the interface structure. In the present paper, we pursue our investigation of the augmented formulation and we introduce a new coupling framework which is now based on the so-called thick interface model. For scalar nonlinear hyperbolic equations in one space variable, we observe that the Cauchy problem is well-posed. Then, our main achievement in the present paper is the design of a new well-balanced finite volume scheme which is adapted to the thick interface model, together with a proof of its convergence toward the unique entropy solution (for a broad class of nonlinear hyperbolic equations). Due to the presence of a possibly resonant interface, the standard technique based on a total variation estimate does not apply, and DiPerna's uniqueness theorem must be used. Following a method proposed by Coquel and LeFloch, our proof relies on discrete entropy inequalities for the coupling problem and an estimate of the discrete entropy dissipation in the proposed scheme.Comment: 21 page

    A gauge theoretic approach to elasticity with microrotations

    Full text link
    We formulate elasticity theory with microrotations using the framework of gauge theories, which has been developed and successfully applied in various areas of gravitation and cosmology. Following this approach, we demonstrate the existence of particle-like solutions. Mathematically this is due to the fact that our equations of motion are of Sine-Gordon type and thus have soliton type solutions. Similar to Skyrmions and Kinks in classical field theory, we can show explicitly that these solutions have a topological origin.Comment: 15 pages, 1 figure; revised and extended version, one extra page; revised and extended versio

    Quantum Ignition of Intramolecular Rotation by Means of IR+UV Laser Pulses

    Get PDF
    Quantum ignition of intramolecular rotation may be achieved as follows: First, a few-cycle infrared (IR) laser pulse excites the torsional vibration in an oriented molecule. Subsequently, a well timed ultrashort ultraviolet (UV) laser pulse induces a Franck-Condon type transition from the electronic ground state to the excited state with approximate conservation of the intramolecular angular momentum. As a consequence, the torsional motion is converted into a unidirectional intramolecular rotation, with high angular momentum (≈ 100 h). The mechanism is demonstrated by means of representative laser driven wave packets which are propagated on ab initio potential energy curves of the model system (4-methyl-cyclohexylidene)fluoromethane

    Brownian motion of Massive Particle in a Space with Curvature and Torsion and Crystals with Defects

    Full text link
    We develop a theory of Brownian motion of a massive particle, including the effects of inertia (Kramers' problem), in spaces with curvature and torsion. This is done by invoking the recently discovered generalized equivalence principle, according to which the equations of motion of a point particle in such spaces can be obtained from the Newton equation in euclidean space by means of a nonholonomic mapping. By this principle, the known Langevin equation in euclidean space goes over into the correct Langevin equation in the Cartan space. This, in turn, serves to derive the Kubo and Fokker-Planck equations satisfied by the particle distribution as a function of time in such a space. The theory can be applied to classical diffusion processes in crystals with defects.Comment: LaTeX, http://www.physik.fu-berlin.de/kleinert.htm

    Volterra Distortions, Spinning Strings, and Cosmic Defects

    Get PDF
    Cosmic strings, as topological spacetime defects, show striking resemblance to defects in solid continua: distortions, which can be classified into disclinations and dislocations, are line-like defects characterized by a delta function-valued curvature and torsion distribution giving rise to rotational and translational holonomy. We exploit this analogy and investigate how distortions can be adapted in a systematic manner from solid state systems to Einstein-Cartan gravity. As distortions are efficiently described within the framework of a SO(3) {\rlap{\supset}\times}} T(3) gauge theory of solid continua with line defects, we are led in a straightforward way to a Poincar\'e gauge approach to gravity which is a natural framework for introducing the notion of distorted spacetimes. Constructing all ten possible distorted spacetimes, we recover, inter alia, the well-known exterior spacetime of a spin-polarized cosmic string as a special case of such a geometry. In a second step, we search for matter distributions which, in Einstein-Cartan gravity, act as sources of distorted spacetimes. The resulting solutions, appropriately matched to the distorted vacua, are cylindrically symmetric and are interpreted as spin-polarized cosmic strings and cosmic dislocations.Comment: 24 pages, LaTeX, 9 eps figures; remarks on energy conditions added, discussion extended, version to be published in Class. Quantum Gra

    Detrital zircons constraining basement age in a late Archaean greenstone belt of South-Eastern Rajasthan, India

    Get PDF
    We report a 207Pb/ 206Pb age of ca. 3230 Ma age for detrital zircon grains from the quartzite of the greenstone association in the Rakhiawal area, east of Udaipur, south-eastern Rajasthan. The age helps to constrain the maximum age of the greenstone belt of the region

    Nonholonomic Mapping Principle for Classical Mechanics in Spaces with Curvature and Torsion. New Covariant Conservation Law for Energy-Momentum Tensor

    Full text link
    The lecture explains the geometric basis for the recently-discovered nonholonomic mapping principle which specifies certain laws of nature in spacetimes with curvature and torsion from those in flat spacetime, thus replacing and extending Einstein's equivalence principle. An important consequence is a new action principle for determining the equation of motion of a free spinless point particle in such spacetimes. Surprisingly, this equation contains a torsion force, although the action involves only the metric. This force changes geodesic into autoparallel trajectories, which are a direct manifestation of inertia. The geometric origin of the torsion force is a closure failure of parallelograms. The torsion force changes the covariant conservation law of the energy-momentum tensor whose new form is derived.Comment: Corrected typos. Author Information under http://www.physik.fu-berlin.de/~kleinert/institution.html . Paper also at http://www.physik.fu-berlin.de/~kleinert/kleiner_re261/preprint.htm
    corecore