We derive general relations between grain boundaries, rotational
deformations, and stress-free states for the mesoscale continuum Nye
dislocation density tensor. Dislocations generally are associated with
long-range stress fields. We provide the general form for dislocation density
fields whose stress fields vanish. We explain that a grain boundary (a
dislocation wall satisfying Frank's formula) has vanishing stress in the
continuum limit. We show that the general stress-free state can be written
explicitly as a (perhaps continuous) superposition of flat Frank walls. We show
that the stress-free states are also naturally interpreted as configurations
generated by a general spatially-dependent rotational deformation. Finally, we
propose a least-squares definition for the spatially-dependent rotation field
of a general (stressful) dislocation density field.Comment: 9 pages, 3 figure