40 research outputs found

    On the adaptive function of children's and adults' false memories

    Get PDF
    Recent research has shown that memory illusions can successfully prime both children’s and adults’ performance on complex, insight-based problems (compound remote associates tasks or CRATs). The current research aimed to clarify the locus of these priming effects. Like before, Deese/Roediger-McDermott (DRM) lists were selected to prime subsequent CRATs such that the critical lures were also the solution words to a subset of the CRATs participants attempted to solve. Unique to the present research, recognition memory tests were used and participants were either primed during the list study phase, during the memory test phase, or both. Across two experiments, primed problems were solved more frequently and significantly faster than unprimed problems. Moreover, when participants were primed during the list study phase, subsequent solution times and rates were considerably superior to those produced by those participants who were simply primed at test. Together, these are the first results to show that false-memory priming during encoding facilitates problem solving in both children and adults

    Formal modeling and analysis of cognitive agent behavior

    Get PDF
    From an external perspective, cognitive agent behavior can be described by specifying (temporal) correlations of a certain complexity between stimuli (input states) and (re)actions (output states) of the agent. From an internal perspective the agent’s dynamics can be characterized by direct (causal) temporal relations between internal and mental states of the agent. The latter type of specifications can be represented in a relatively simple, executable format, which enables different types of analysis of the agent’s behavior. In particular, simulations of the agent’s behavior under different (environmental) circumstances can be explored. Furthermore, by applying verification techniques, automated analysis of the consequences of the agent’s behavior can be carried out. To enable such types of analysis when only given an external behavioral specification, this has to be transformed first into some type of executable format. An automated procedure for such a transformation is proposed in this paper. The application of the transformation procedure is demonstrated for a number of cases, showing examples of the types of analysis as mentioned for different forms of behavior

    Becoming original: effects of strategy instruction

    Get PDF
    Visual arts education focuses on creating original visual art products. A means to improve originality is enhancement of divergent thinking, indicated by fluency, flexibility and originality of ideas. In regular arts lessons, divergent thinking is mostly promoted through brainstorming. In a previous study, we found positive effects of an explicit instruction of metacognition on fluency and flexibility in terms of the generation of ideas, but not on the originality of ideas. Therefore, we redesigned the instruction with a focus on building up knowledge about creative generation strategies by adding more complex types of association, and adding generation through combination and abstraction. In the present study, we examined the effects of this intervention by comparing it with regular brainstorming instruction. In a pretest-posttest control group design, secondary school students in the comparison condition received the brainstorm lesson and students in the experimental condition received the newly developed instruction lesson. To validate the effects, we replicated this study with a second cohort. The results showed that in both cohorts the strategy instruction of 50 min had positive effects on students' fluency, flexibility and originality. This study implies that instructional support in building up knowledge about creative generation strategies may improve students' creative processes in visual arts education

    Simulating Context Effects in Problem Solving with AMBR

    No full text
    This paper presents a computer simulation of context effects on problem solving with AMBR --- a model of human analogy-making. It demonstrates how perceiving some incidental objects from the environment may change the way the problem is being solved. It also shows that the timing of this perception is important: while the context element may have crucial influence during the initial stages of problem solving it has virtually no effect during the later stages. The simulation also explores the difference between an explicit hint condition where the focus of attention is drawn towards a context situation which is analogous to the target problem and an implicit context condition where an arbitrary object from the environment makes us remind an old episode

    Re-representation in a Logic-Based Model for Analogy Making

    No full text
    corecore