3,645 research outputs found

    Specific binding of chloride ions to lipid vesicles and implications at molecular scale

    Get PDF
    Biological membranes composed of lipids and proteins are in contact with electrolytes like aqueous NaCl solutions. Based on molecular dynamics studies it is widely believed that Na(+) ions specifically bind to 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) membranes, whereas Cl(−) ions stay in solution. Here, we present a careful comparison of recent data from electrophoresis and isothermal titration calorimetry experiments as well as molecular dynamics simulations suggesting that in fact both ions show very similar affinities. The corresponding binding constants are [Formula: see text] M(−1) for Na(+) and [Formula: see text] M(−1) for Cl(−) ions. This is highlighted by our observation that a widely used simulation setup showing asymmetric affinities of Na(+) and Cl(−) for POPC bilayers overestimates the effect of NaCl on the electrophoretic mobility of a POPC membrane by an order of magnitude. Implications for previous simulation results on the effect of NaCl on polarization of interfacial water, transmembrane potentials, and mechanisms for ion transport through bilayers are discussed. Our findings suggest that a range of published simulations results on the interaction of NaCl with phosphocholine bilayers have to be reconsidered and revised and that force field refinements are necessary for reliable simulation studies of membranes at physiological conditions on a molecular level

    Decay of pseudoscalars into lepton pairs and large-Nc QCD

    Get PDF
    The counterterm combination that describes the decay of pseudoscalar mesons into charged lepton pairs at lowest order in chiral perturbation theory is considered within the framework of QCD in the limit of a large number of colours Nc. When further restricted to the lowest meson dominance approximation to large-Nc QCD, our results agree well with the available experimental data.Comment: 5 pages, 2 figure

    An example of resonance saturation at one loop

    Get PDF
    We argue that the large-Nc expansion of QCD can be used to treat a Lagrangian of resonances in a perturbative way. As an illustration of this we compute the L_10 coupling of the Chiral Lagrangian by integrating out resonance fields at one loop. Given a Lagrangian and a renormalization scheme, this is how in principle one can answer in a concrete and unambiguous manner questions such as at what scale resonance saturation takes place.Comment: 9 pages, 5 figures. Enlarged discussion, results unchanged. To be published in Phys. Rev.

    Matrix Elements of Electroweak Penguin Operators in the 1/Nc Expansion

    Full text link
    It is shown that the K -> pi pi matrix elements of the four-quark operator Q_7, generated by the electroweak penguin-like diagrams of the Standard Model, can be calculated to first non-trivial order in the chiral expansion and in the 1/Nc expansion. Although the resulting B factors B_7^(1/2) and B_7^(3/2) are found to depend only logarithmically on the matching scale, mu, their actual numerical values turn out to be rather sensitive to the precise choice of mu in the GeV region. We compare our results to recent numerical evaluations from lattice-QCD and to other model estimates.Comment: 10 pages, LateX, two figures (inserted). Improved comparison with the lattice results. Results unchange

    The ππ\pi\pi Amplitude in Generalized Chiral Perturbation Theory

    Full text link
    The ππ\pi\pi interaction is studied at one loop order in the framework of Generalized Chiral Perturbation theoryComment: Compressed+ uuencoded Postscript file, 13pages, 6 figures to appear in the 2nd ed. of the DAFNE Physics Handboo

    Contributions of order O(mquark2){\cal O}(m_{\rm quark}^2) to Kℓ3K_{\ell 3} form factors and unitarity of the CKM matrix

    Full text link
    The form factors for the Kℓ3K_{\ell 3} semileptonic decay are computed to order O(p4)O(p^4) in generalized chiral perturbation theory. The main difference with the standard O(p4)O(p^4) expressions consists in contributions quadratic in quark masses, which are described by a single divergence-free low-energy constant, A3A_3. A new simultaneous analysis is presented for the CKM matrix element VusV_{us}, the ratio FK/FπF_K/F_{\pi}, Kℓ3K_{\ell 3} decay rates and the scalar form factor slope λ0\lambda_0. This framework easily accommodates the precise value for VudV_{ud} deduced from superallowed nuclear ÎČ\beta-decays

    Chiral two-loop pion-pion scattering parameters from crossing-symmetric constraints

    Get PDF
    Constraints on the parameters in the one- and two-loop pion-pion scattering amplitudes of standard chiral perturbation theory are obtained from explicitly crossing-symmetric sum rules. These constraints are based on a matching of the chiral amplitudes and the physical amplitudes at the symmetry point of the Mandelstam plane. The integrals over absorptive parts appearing in the sum rules are decomposed into crossing-symmetric low- and high-energy components and the chiral parameters are finally related to high-energy absorptive parts. A first application uses a simple model of these absorptive parts. The sensitivity of the results to the choice of the energy separating high and low energies is examined with care. Weak dependence on this energy is obtained as long as it stays below ~560 MeV. Reliable predictions are obtained for three two-loop parameters.Comment: 23 pages, 4 figures in .eps files, Latex (RevTex), our version of RevTex runs under Latex2.09, submitted to Phys. Rev. D,minor typographical corrections including the number at the end of the abstract, two sentences added at the end of Section 5 in answer to a referee's remar

    Fluctuations of g-factors in metal nanoparticles: Effects of electron-electron interaction and spin-orbit scattering

    Full text link
    We investigate the combined effect of spin-orbit scattering and electron-electron interactions on the probability distribution of gg-factors of metal nanoparticles. Using random matrix theory, we find that even a relatively small interaction strength %(ratio of exchange constant JJ and mean level %spacing \spacing ≃0.3\simeq 0.3) significantly increases gg-factor fluctuations for not-too-strong spin-orbit scattering (ratio of spin-orbit rate and single-electron level spacing 1/\tau_{\rm so} \spacing \lesssim 1), and leads to the possibility to observe gg-factors larger than two.Comment: RevTex, 2 figures inserte
    • 

    corecore