346 research outputs found
Modelling Dust Evolution in Galaxies with a Multiphase, Inhomogeneous ISM
We develop a model of dust evolution in a multiphase, inhomogeneous ISM
including dust growth and destruction processes. The physical conditions for
grain evolution are taken from hydrodynamical simulations of giant molecular
clouds in a Milky Way-like spiral galaxy. We improve the treatment of dust
growth by accretion in the ISM to investigate the role of the
temperature-dependent sticking coefficient and ion-grain interactions. From
detailed observational data on the gas-phase Si abundances [Si/H]_{gas}
measured in the local Galaxy, we derive a relation between the average
[Si/H]_{gas} and the local gas density n(H) which we use as a critical
constraint for the models. This relation requires a sticking coefficient that
decreases with the gas temperature. The synthetic relation constructed from the
spatial dust distribution reproduces the slope of -0.5 of the observed relation
in cold clouds. This slope is steeper than that for the warm medium and is
explained by the dust growth. We find that it occurs for all adopted values of
the minimum grain size a_{min} from 1 to 5nm. For the classical cut-off of
a_{min}=5 nm, the ion-grain interactions result in longer growth timescales and
higher [Si/H]_{gas} than the observed values. For a_{min} below 3 nm, the
ion-grain interactions enhance the growth rates, steepen the slope of
[Si/H]_{gas}-n(H) relation and provide a better match to observations. The
rates of dust re-formation in the ISM by far exceed the rates of dust
production by stellar sources as expected from simple evolution models. After
the cycle of matter in and out of dust reaches a steady state, the dust growth
balances the destruction operating on similar timescales of 350 Myr.Comment: 17 pages, 11 figures, accepted to Ap
The effects of a background potential in star cluster evolution: a delay in the relaxation time-scale and runaway collision processes
Runaway stellar collisions in dense star clusters are invoked to explain the
presence of very massive stars or blue stragglers in the center of those
systems. This process has also been explored for the first star clusters in the
Universe and shown to yield stars that may collapse at some points into an
intermediate mass black hole. Although the early evolution of star clusters
requires the explicit modeling of the gas out of which the stars form, these
calculations would be extremely time-consuming and often the effects of the gas
can be accurately treated by including a background potential to account for
the extra gravitational force. We apply this approximation to model the early
evolution of the first dense star clusters formed in the Universe by performing
-body simulations, our goal is to understand how the additional
gravitational force affects the growth of a very massive star through stellar
mergers in the central parts of the star cluster. Our results show that the
background potential increases the velocities of the stars, causing an overall
delay in the evolution of the clusters and in the runaway growth of a massive
star at the center. The population of binary stars is lower due to the
increased kinetic energy of the stars, initially reducing the number of stellar
collisions, and we show that relaxation processes are also affected. Despite
these effects, the external potential enhances the mass of the merger product
by a factor 2 if the collisions are maintained for long times.Comment: 16 pages. Accepted for publication in Astronomy and Astrophysic
Collapse, outflows and fragmentation of massive, turbulent and magnetized prestellar barotropic cores
Stars and more particularly massive stars, have a drastic impact on galaxy
evolution. Yet the conditions in which they form and collapse are still not
fully understood. In particular, the influence of the magnetic field on the
collapse of massive clumps is relatively unexplored, it is thus of great
relevance in the context of the formation of massive stars to investigate its
impact. We perform high resolution, MHD simulations of the collapse of hundred
solar masses, turbulent and magnetized clouds, using the adaptive mesh
refinement code RAMSES. We compute various quantities such as mass
distribution, magnetic field and angular momentum within the collapsing core
and study the episodic outflows and the fragmentation that occurs during the
collapse. The magnetic field has a drastic impact on the cloud evolution. We
find that magnetic braking is able to substantially reduce the angular momentum
in the inner part of the collapsing cloud. Fast and episodic outflows are being
launched with typical velocities of the order of 3-5 km s although the
highest velocities can be as high as 30-40 km s. The fragmentation in
several objects, is reduced in substantially magnetized clouds with respect to
hydrodynamical ones by a factor of the order of 1.5-2. We conclude that
magnetic fields have a significant impact on the evolution of massive clumps.
In combination with radiation, magnetic fields largely determine the outcome of
massive core collapse. We stress that numerical convergence of MHD collapse is
a challenging issue. In particular, numerical diffusion appears to be important
at high density therefore possibly leading to an over-estimation of the number
of fragments.Comment: accepted for publication in A&
Star Formation in Isolated Disk Galaxies. I. Models and Characteristics of Nonlinear Gravitational Collapse
We model gravitational collapse leading to star formation in a wide range of
isolated disk galaxies using a three-dimensional, smoothed particle
hydrodynamics code. The model galaxies include a dark matter halo and a disk of
stars and isothermal gas. Absorbing sink particles are used to directly measure
the mass of gravitationally collapsing gas. They reach masses characteristic of
stellar clusters. In this paper, we describe our galaxy models and numerical
methods, followed by an investigation of the gravitational instability in these
galaxies. Gravitational collapse forms star clusters with correlated positions
and ages, as observed, for example, in the Large Magellanic Cloud.
Gravitational instability alone acting in unperturbed galaxies appears
sufficient to produce flocculent spiral arms, though not more organized
patterns. Unstable galaxies show collapse in thin layers in the galactic plane;
associated dust will form thin dust lanes in those galaxies, in agreement with
observations. (abridged)Comment: 49 pages, 22 figures, to appear in ApJ (July, 2005), version with
high quality color images can be fond in
http://research.amnh.org/~yuexing/astro-ph/0501022.pd
Can Protostellar Jets Drive Supersonic Turbulence in Molecular Clouds?
Jets and outflows from young stellar objects are proposed candidates to drive
supersonic turbulence in molecular clouds. Here, we present the results from
multi-dimensional jet simulations where we investigate in detail the energy and
momentum deposition from jets into their surrounding environment and quantify
the character of the excited turbulence with velocity probability density
functions. Our study include jet--clump interaction, transient jets, and
magnetised jets. We find that collimated supersonic jets do not excite
supersonic motions far from the vicinity of the jet. Supersonic fluctuations
are damped quickly and do not spread into the parent cloud. Instead subsonic,
non-compressional modes occupy most of the excited volume. This is a generic
feature which can not be fully circumvented by overdense jets or magnetic
fields. Nevertheless, jets are able to leave strong imprints in their cloud
structure and can disrupt dense clumps. Our results question the ability of
collimated jets to sustain supersonic turbulence in molecular clouds.Comment: 33 pages, 18 figures, accepted by ApJ, version with high resolution
figures at:
http://www.ita.uni-heidelberg.de/~banerjee/publications/jet_paper.pd
A Holistic Scenario of Turbulent Molecular Cloud Evolution and Control of the Star Formation Efficiency. First Tests
We compile a holistic scenario for molecular cloud (MC) evolution and control
of the star formation efficiency (SFE), and present a first set of numerical
tests of it. A {\it lossy} compressible cascade can generate density
fluctuations and further turbulence at small scales from large-scale motions,
implying that the turbulence in MCs may originate from the compressions that
form them. Below a {\it sonic} scale \ls, turbulence cannot induce any
further subfragmentation, nor be a dominant support agent against gravity.
Since progressively smaller density peaks contain progressively smaller
fractions of the mass, we expect the SFE to decrease with decreasing \ls, at
least when the cloud is globally supported by turbulence. Our numerical
experiments confirm this prediction. We also find that the collapsed mass
fraction in the simulations always saturates below 100% efficiency. This may be
due to the decreased mean density of the leftover interclump medium, which in
real clouds (not confined to a box) should then be more easily dispersed,
marking the ``death'' of the cloud. We identify two different functional
dependences (``modes'') of the SFE on \ls, which roughly correspond to
globally supported and unsupported cases. Globally supported runs with most of
the turbulent energy at the largest scales have similar SFEs to those of
unsupported runs, providing numerical evidence of the dual role of turbulence,
whereby large-scale turbulent modes induce collapse at smaller scales. We
tentatively suggest that these modes may correspond to the clustered and
isolated modes of star formation, although here they are seen to form part of a
continuum rather than being separate modes. Finally, we compare with previous
proposals that the relevant parameter is the energy injection scale.Comment: 6 pages, 3 figures. Uses emulateapj. Accepted in ApJ Letter
Turbulent Mixing in the Interstellar Medium -- an application for Lagrangian Tracer Particles
We use 3-dimensional numerical simulations of self-gravitating compressible
turbulent gas in combination with Lagrangian tracer particles to investigate
the mixing process of molecular hydrogen (H2) in interstellar clouds. Tracer
particles are used to represent shock-compressed dense gas, which is associated
with H2. We deposit tracer particles in regions of density contrast in excess
of ten times the mean density. Following their trajectories and using
probability distribution functions, we find an upper limit for the mixing
timescale of H2, which is of order 0.3 Myr. This is significantly smaller than
the lifetime of molecular clouds, which demonstrates the importance of the
turbulent mixing of H2 as a preliminary stage to star formation.Comment: 10 pages, 5 figures, conference proceedings "Turbulent Mixing and
Beyond 2007
Magnetic Field Amplification by Small-Scale Dynamo Action: Dependence on Turbulence Models and Reynolds and Prandtl Numbers
The small-scale dynamo is a process by which turbulent kinetic energy is
converted into magnetic energy, and thus is expected to depend crucially on the
nature of turbulence. In this work, we present a model for the small-scale
dynamo that takes into account the slope of the turbulent velocity spectrum
v(l) ~ l^theta, where l and v(l) are the size of a turbulent fluctuation and
the typical velocity on that scale. The time evolution of the fluctuation
component of the magnetic field, i.e., the small-scale field, is described by
the Kazantsev equation. We solve this linear differential equation for its
eigenvalues with the quantum-mechanical WKB-approximation. The validity of this
method is estimated as a function of the magnetic Prandtl number Pm. We
calculate the minimal magnetic Reynolds number for dynamo action, Rm_crit,
using our model of the turbulent velocity correlation function. For Kolmogorov
turbulence (theta=1/3), we find that the critical magnetic Reynolds number is
approximately 110 and for Burgers turbulence (theta=1/2) approximately 2700.
Furthermore, we derive that the growth rate of the small-scale magnetic field
for a general type of turbulence is Gamma ~ Re^((1-theta)/(1+theta)) in the
limit of infinite magnetic Prandtl numbers. For decreasing magnetic Prandtl
number (down to Pm approximately larger than 10), the growth rate of the
small-scale dynamo decreases. The details of this drop depend on the
WKB-approximation, which becomes invalid for a magnetic Prandtl number of about
unity.Comment: 13 pages, 8 figures; published in Phys. Rev. E 201
- …
