346 research outputs found

    Modelling Dust Evolution in Galaxies with a Multiphase, Inhomogeneous ISM

    Get PDF
    We develop a model of dust evolution in a multiphase, inhomogeneous ISM including dust growth and destruction processes. The physical conditions for grain evolution are taken from hydrodynamical simulations of giant molecular clouds in a Milky Way-like spiral galaxy. We improve the treatment of dust growth by accretion in the ISM to investigate the role of the temperature-dependent sticking coefficient and ion-grain interactions. From detailed observational data on the gas-phase Si abundances [Si/H]_{gas} measured in the local Galaxy, we derive a relation between the average [Si/H]_{gas} and the local gas density n(H) which we use as a critical constraint for the models. This relation requires a sticking coefficient that decreases with the gas temperature. The synthetic relation constructed from the spatial dust distribution reproduces the slope of -0.5 of the observed relation in cold clouds. This slope is steeper than that for the warm medium and is explained by the dust growth. We find that it occurs for all adopted values of the minimum grain size a_{min} from 1 to 5nm. For the classical cut-off of a_{min}=5 nm, the ion-grain interactions result in longer growth timescales and higher [Si/H]_{gas} than the observed values. For a_{min} below 3 nm, the ion-grain interactions enhance the growth rates, steepen the slope of [Si/H]_{gas}-n(H) relation and provide a better match to observations. The rates of dust re-formation in the ISM by far exceed the rates of dust production by stellar sources as expected from simple evolution models. After the cycle of matter in and out of dust reaches a steady state, the dust growth balances the destruction operating on similar timescales of 350 Myr.Comment: 17 pages, 11 figures, accepted to Ap

    The effects of a background potential in star cluster evolution: a delay in the relaxation time-scale and runaway collision processes

    Full text link
    Runaway stellar collisions in dense star clusters are invoked to explain the presence of very massive stars or blue stragglers in the center of those systems. This process has also been explored for the first star clusters in the Universe and shown to yield stars that may collapse at some points into an intermediate mass black hole. Although the early evolution of star clusters requires the explicit modeling of the gas out of which the stars form, these calculations would be extremely time-consuming and often the effects of the gas can be accurately treated by including a background potential to account for the extra gravitational force. We apply this approximation to model the early evolution of the first dense star clusters formed in the Universe by performing NN-body simulations, our goal is to understand how the additional gravitational force affects the growth of a very massive star through stellar mergers in the central parts of the star cluster. Our results show that the background potential increases the velocities of the stars, causing an overall delay in the evolution of the clusters and in the runaway growth of a massive star at the center. The population of binary stars is lower due to the increased kinetic energy of the stars, initially reducing the number of stellar collisions, and we show that relaxation processes are also affected. Despite these effects, the external potential enhances the mass of the merger product by a factor \sim2 if the collisions are maintained for long times.Comment: 16 pages. Accepted for publication in Astronomy and Astrophysic

    Collapse, outflows and fragmentation of massive, turbulent and magnetized prestellar barotropic cores

    Get PDF
    Stars and more particularly massive stars, have a drastic impact on galaxy evolution. Yet the conditions in which they form and collapse are still not fully understood. In particular, the influence of the magnetic field on the collapse of massive clumps is relatively unexplored, it is thus of great relevance in the context of the formation of massive stars to investigate its impact. We perform high resolution, MHD simulations of the collapse of hundred solar masses, turbulent and magnetized clouds, using the adaptive mesh refinement code RAMSES. We compute various quantities such as mass distribution, magnetic field and angular momentum within the collapsing core and study the episodic outflows and the fragmentation that occurs during the collapse. The magnetic field has a drastic impact on the cloud evolution. We find that magnetic braking is able to substantially reduce the angular momentum in the inner part of the collapsing cloud. Fast and episodic outflows are being launched with typical velocities of the order of 3-5 km s1^{-1} although the highest velocities can be as high as 30-40 km s1^{-1}. The fragmentation in several objects, is reduced in substantially magnetized clouds with respect to hydrodynamical ones by a factor of the order of 1.5-2. We conclude that magnetic fields have a significant impact on the evolution of massive clumps. In combination with radiation, magnetic fields largely determine the outcome of massive core collapse. We stress that numerical convergence of MHD collapse is a challenging issue. In particular, numerical diffusion appears to be important at high density therefore possibly leading to an over-estimation of the number of fragments.Comment: accepted for publication in A&

    Star Formation in Isolated Disk Galaxies. I. Models and Characteristics of Nonlinear Gravitational Collapse

    Full text link
    We model gravitational collapse leading to star formation in a wide range of isolated disk galaxies using a three-dimensional, smoothed particle hydrodynamics code. The model galaxies include a dark matter halo and a disk of stars and isothermal gas. Absorbing sink particles are used to directly measure the mass of gravitationally collapsing gas. They reach masses characteristic of stellar clusters. In this paper, we describe our galaxy models and numerical methods, followed by an investigation of the gravitational instability in these galaxies. Gravitational collapse forms star clusters with correlated positions and ages, as observed, for example, in the Large Magellanic Cloud. Gravitational instability alone acting in unperturbed galaxies appears sufficient to produce flocculent spiral arms, though not more organized patterns. Unstable galaxies show collapse in thin layers in the galactic plane; associated dust will form thin dust lanes in those galaxies, in agreement with observations. (abridged)Comment: 49 pages, 22 figures, to appear in ApJ (July, 2005), version with high quality color images can be fond in http://research.amnh.org/~yuexing/astro-ph/0501022.pd

    Can Protostellar Jets Drive Supersonic Turbulence in Molecular Clouds?

    Full text link
    Jets and outflows from young stellar objects are proposed candidates to drive supersonic turbulence in molecular clouds. Here, we present the results from multi-dimensional jet simulations where we investigate in detail the energy and momentum deposition from jets into their surrounding environment and quantify the character of the excited turbulence with velocity probability density functions. Our study include jet--clump interaction, transient jets, and magnetised jets. We find that collimated supersonic jets do not excite supersonic motions far from the vicinity of the jet. Supersonic fluctuations are damped quickly and do not spread into the parent cloud. Instead subsonic, non-compressional modes occupy most of the excited volume. This is a generic feature which can not be fully circumvented by overdense jets or magnetic fields. Nevertheless, jets are able to leave strong imprints in their cloud structure and can disrupt dense clumps. Our results question the ability of collimated jets to sustain supersonic turbulence in molecular clouds.Comment: 33 pages, 18 figures, accepted by ApJ, version with high resolution figures at: http://www.ita.uni-heidelberg.de/~banerjee/publications/jet_paper.pd

    A Holistic Scenario of Turbulent Molecular Cloud Evolution and Control of the Star Formation Efficiency. First Tests

    Get PDF
    We compile a holistic scenario for molecular cloud (MC) evolution and control of the star formation efficiency (SFE), and present a first set of numerical tests of it. A {\it lossy} compressible cascade can generate density fluctuations and further turbulence at small scales from large-scale motions, implying that the turbulence in MCs may originate from the compressions that form them. Below a {\it sonic} scale \ls, turbulence cannot induce any further subfragmentation, nor be a dominant support agent against gravity. Since progressively smaller density peaks contain progressively smaller fractions of the mass, we expect the SFE to decrease with decreasing \ls, at least when the cloud is globally supported by turbulence. Our numerical experiments confirm this prediction. We also find that the collapsed mass fraction in the simulations always saturates below 100% efficiency. This may be due to the decreased mean density of the leftover interclump medium, which in real clouds (not confined to a box) should then be more easily dispersed, marking the ``death'' of the cloud. We identify two different functional dependences (``modes'') of the SFE on \ls, which roughly correspond to globally supported and unsupported cases. Globally supported runs with most of the turbulent energy at the largest scales have similar SFEs to those of unsupported runs, providing numerical evidence of the dual role of turbulence, whereby large-scale turbulent modes induce collapse at smaller scales. We tentatively suggest that these modes may correspond to the clustered and isolated modes of star formation, although here they are seen to form part of a continuum rather than being separate modes. Finally, we compare with previous proposals that the relevant parameter is the energy injection scale.Comment: 6 pages, 3 figures. Uses emulateapj. Accepted in ApJ Letter

    Turbulent Mixing in the Interstellar Medium -- an application for Lagrangian Tracer Particles

    Full text link
    We use 3-dimensional numerical simulations of self-gravitating compressible turbulent gas in combination with Lagrangian tracer particles to investigate the mixing process of molecular hydrogen (H2) in interstellar clouds. Tracer particles are used to represent shock-compressed dense gas, which is associated with H2. We deposit tracer particles in regions of density contrast in excess of ten times the mean density. Following their trajectories and using probability distribution functions, we find an upper limit for the mixing timescale of H2, which is of order 0.3 Myr. This is significantly smaller than the lifetime of molecular clouds, which demonstrates the importance of the turbulent mixing of H2 as a preliminary stage to star formation.Comment: 10 pages, 5 figures, conference proceedings "Turbulent Mixing and Beyond 2007

    Magnetic Field Amplification by Small-Scale Dynamo Action: Dependence on Turbulence Models and Reynolds and Prandtl Numbers

    Get PDF
    The small-scale dynamo is a process by which turbulent kinetic energy is converted into magnetic energy, and thus is expected to depend crucially on the nature of turbulence. In this work, we present a model for the small-scale dynamo that takes into account the slope of the turbulent velocity spectrum v(l) ~ l^theta, where l and v(l) are the size of a turbulent fluctuation and the typical velocity on that scale. The time evolution of the fluctuation component of the magnetic field, i.e., the small-scale field, is described by the Kazantsev equation. We solve this linear differential equation for its eigenvalues with the quantum-mechanical WKB-approximation. The validity of this method is estimated as a function of the magnetic Prandtl number Pm. We calculate the minimal magnetic Reynolds number for dynamo action, Rm_crit, using our model of the turbulent velocity correlation function. For Kolmogorov turbulence (theta=1/3), we find that the critical magnetic Reynolds number is approximately 110 and for Burgers turbulence (theta=1/2) approximately 2700. Furthermore, we derive that the growth rate of the small-scale magnetic field for a general type of turbulence is Gamma ~ Re^((1-theta)/(1+theta)) in the limit of infinite magnetic Prandtl numbers. For decreasing magnetic Prandtl number (down to Pm approximately larger than 10), the growth rate of the small-scale dynamo decreases. The details of this drop depend on the WKB-approximation, which becomes invalid for a magnetic Prandtl number of about unity.Comment: 13 pages, 8 figures; published in Phys. Rev. E 201
    corecore