26 research outputs found

    Tallness is associated with risk of testicular cancer: evidence for the nutrition hypothesis

    Get PDF
    The pathogenesis of testicular germ cell tumours (GCTs) is potentially influenced by high-energy nutrition during infancy. As adult height is a proxy for childhood nutrition, we investigated the role of nutrition in GCT pathogenesis by comparing stature of patients with healthy men. In a matched case–control study, 6415 patients with GCT were compared with healthy army conscripts (1:6 matching modus) with regard to height (cm) and body mass index (BMI; kg/m2). Statistical analysis involved tabulation of descriptive height measures and BMI. Conditional logistic regression models were used to quantify the association of GCT with height, with odds ratios (OR) adjusted for BMI. The literature was searched for studies on stature in GCT patients. Body size is significantly associated with risk of GCT, very tall men (>195 cm) having a GCT risk of OR=3.35 (95% confidence intervals (CI): 2.88–3.90; adjusted). Short stature is protective (OR=0.798; 95% CI: 0.68–0.93). Both histologic subgroups are associated with tallness. Of 16 previous reports, 7 were confirmative, 5 had null and 4 equivocal results. The association of stature with GCT risk accords with the nutrition hypothesis of GCT. This study expands the current view of GCT tumorigenesis by suggesting that high-calorie intake in childhood promotes GCT precursors originating in utero

    Understanding How Microplastics Affect Marine Biota on the Cellular Level Is Important for Assessing Ecosystem Function: A Review

    Get PDF
    Plastic has become indispensable for human life. When plastic debris is discarded into waterways, these items can interact with organisms. Of particular concern are microscopic plastic particles (microplastics) which are subject to ingestion by several taxa. This review summarizes the results of cutting-edge research about the interactions between a range of aquatic species and microplastics, including effects on biota physiology and secondary ingestion. Uptake pathways via digestive or ventilatory systems are discussed, including (1) the physical penetration of microplastic particles into cellular structures, (2) leaching of chemical additives or adsorbed persistent organic pollutants (POPs), and (3) consequences of bacterial or viral microbiota contamination associated with microplastic ingestion. Following uptake, a number of individual-level effects have been observed, including reduction of feeding activities, reduced growth and reproduction through cellular modifications, and oxidative stress. Microplastic-associated effects on marine biota have become increasingly investigated with growing concerns regarding human health through trophic transfer. We argue that research on the cellular interactions with microplastics provide an understanding of their impact to the organisms’ fitness and, therefore, its ability to sustain their functional role in the ecosystem. The review summarizes information from 236 scientific publications. Of those, only 4.6% extrapolate their research of microplastic intake on individual species to the impact on ecosystem functioning. We emphasize the need for risk evaluation from organismal effects to an ecosystem level to effectively evaluate the effect of microplastic pollution on marine environments. Further studies are encouraged to investigate sublethal effects in the context of environmentally relevant microplastic pollution conditions

    Caecilian jaw closing mechanics: integrating two muscle systems

    No full text
    Caecilians (Lissamphibia: Gymnophiona) are unique among vertebrates in having two sets of jaw-closing muscles, one on either side of the jaw joint. Using data from high-resolution X-ray radiation computed tomography scans, we modelled the effect of these two muscle groups (mm. levatores mandibulae and m. interhyoideus posterior) on bite force over a range of gape angles, employing a simplified lever arm mechanism that takes into account muscle cross-sectional area and fibre angle. Measurements of lever arm lengths, muscle fibre orientations and physiological cross-sectional area of cranial muscles were available from three caecilian species: Ichthyophis cf. kohtaoensis; Siphonops annulatus; and Typhlonectes natans. The maximal gape of caecilians is restricted by a critical gape angle above which the mm. levatores mandibulae will open the jaw and destabilize the mandibular joint. The presence of destabilizing forces in the caecilian jaw mechanism may be compensated for by a mandibular joint in that the fossa is wrapped around the condyle to resist dislocation. The caecilian skull is streptostylic; the quadrate-squamosal complex moves with respect to the rest of the skull. This increases the leverage of the jaw-closing muscles. We also demonstrate that the unusual jaw joint requires streptostyly because there is a dorsolateral movement of the quadrate-squamosal complex when the jaw closes. The combination of the two jaw-closing systems results in high bite forces over a wide range of gape angles, an important advantage for generalist feeders such as caecilians. The relative sizes and leverage mechanics of the two closing systems allow one to exert more force when the other has a poor mechanical advantage. This effect is seen in all three species we examined. In the aquatic T. natans, with its less well-roofed skull, there is a larger contribution of the mm. levatores mandibulae to total bite force than in the terrestrial I. cf. kohtaoensis and S. annulatus

    Feeding in Amphibians: Evolutionary Transformations and Phenotypic Diversity as Drivers of Feeding System Diversity

    No full text
    International audienc
    corecore