667 research outputs found
The WINGS Survey: a progress report
A two-band (B and V) wide-field imaging survey of a complete, all-sky X-ray
selected sample of 78 clusters in the redshift range z=0.04-0.07 is presented.
The aim of this survey is to provide the astronomical community with a complete
set of homogeneous, CCD-based surface photometry and morphological data of
nearby cluster galaxies located within 1.5 Mpc from the cluster center. The
data collection has been completed in seven observing runs at the INT and
ESO-2.2m telescopes. For each cluster, photometric data of about 2500 galaxies
(down to V~23) and detailed morphological information of about 600 galaxies
(down to V~21) are obtained by using specially designed automatic tools.
As a natural follow up of the photometric survey, we also illustrate a long
term spectroscopic program we are carrying out with the WHT-WYFFOS and AAT-2dF
multifiber spectrographs. Star formation rates and histories, as well as
metallicity estimates will be derived for about 350 galaxies per cluster from
the line indices and equivalent widths measurements, allowing us to explore the
link between the spectral properties and the morphological evolution in high-
to low-density environments, and across a wide range in cluster X-ray
luminosities and optical properties.Comment: 12 pages, 10 eps figures, Proceedings of the SAIt Conference 200
Bright Source of Cold Ions for Surface-Electrode Traps
We produce large numbers of low-energy ions by photoionization of
laser-cooled atoms inside a surface-electrode-based Paul trap. The
isotope-selective trap loading rate of Yb ions/s exceeds
that attained by photoionization (electron impact ionization) of an atomic beam
by four (six) orders of magnitude. Traps as shallow as 0.13 eV are easily
loaded with this technique. The ions are confined in the same spatial region as
the laser-cooled atoms, which will allow the experimental investigation of
interactions between cold ions and cold atoms or Bose-Einstein condensates.Comment: Paper submitted to PRL for review on 2/1/0
The hybrid solution for the Fundamental Plane
By exploiting the database of early-type galaxies (ETGs) members of the WINGS
survey of nearby clusters, we address here the long debated question of the
origin and shape of the Fundamental Plane (FP). Our data suggest that different
physical mechanisms concur in shaping and tilting the FP with respect to the
virial plane (VP) expectation. In particular, an hybrid solution in which the
structure of galaxies and their stellar population are the main contributors to
the FP tilt seems to be favoured. We find that the bulk of the tilt should be
attributed to structural non-homology, while stellar population effects play an
important but less crucial role. Our data indicate that the differential FP
tilt between the V and K-band is due to a sort of entanglement between
structural and stellar population effects, for which the inward steepening of
color profiles (V-K) tends to increase at increasing the stellar mass of ETGs.
The same analysis applied to the ATLAS3D and SDSS data in common with WINGS
(WSDSS throughout the paper) confirms our results, the only remarkable
difference being the less important role of the stellar mass-to-light-ratio in
determining the FP tilt. The ATLAS3D data also suggest that the tilt depends as
well on the dark matter (DM) fraction and on the rotational contribution to the
kinetic energy (Vrot/sigma). We show that the global properties of the FP can
be understood in terms of the underlying correlation among mass, structure and
stellar population of ETGs, for which, at increasing the stellar mass, ETGs
become (on average) older and more centrally concentrated. Finally, we show
that a Malmquist-like selection effect may mimic a differential evolution of
the mass-to-light ratio for galaxies of different masses. This should be taken
into account in the studies investigating the amount of the so called
downsizing phenomenon.Comment: 22 pages, 17 figure
About the dynamics and thermodynamics of trapped ions
This tutorial introduces the dynamics of charged particles in a
radiofrequency trap in a very general manner to point out the differences
between the dynamics in a quadrupole and in a multipole trap. When dense
samples are trapped, the dynamics is modified by the Coulomb repulsion between
ions. To take into account this repulsion, we propose to use a method,
originally developed for particles in Penning trap, that model the ion cloud as
a cold fluid. This method can not reproduce the organisation of cold clouds as
crystals but it allows one to scale the size of large samples with the trapping
parameters and the number of ions trapped, for different linear geometries of
trap.Comment: accepted for publication in the "Modern Applications of Trapped Ions"
special issu
Superconducting, Insulating, and Anomalous Metallic Regimes in a Gated Two-Dimensional Semiconductor-Superconductor Array
The superconductor-insulator transition in two dimensions has been widely
investigated as a paradigmatic quantum phase transition. The topic remains
controversial, however, because many experiments exhibit a metallic regime with
saturating low-temperature resistance, at odds with conventional theory. Here,
we explore this transition in a novel, highly controllable system, a
semiconductor heterostructure with epitaxial Al, patterned to form a regular
array of superconducting islands connected by a gateable quantum well. Spanning
nine orders of magnitude in resistance, the system exhibits regimes of
superconducting, metallic, and insulating behavior, along with signatures of
flux commensurability and vortex penetration. An in-plane magnetic field
eliminates the metallic regime, restoring the direct superconductor-insulator
transition, and improves scaling, while strongly altering the scaling exponent
Atomic Diffusion and Mixing in Old Stars I. VLT/FLAMES-UVES Observations of Stars in NGC 6397
We present a homogeneous photometric and spectroscopic analysis of 18 stars
along the evolutionary sequence of the metal-poor globular cluster NGC 6397
([Fe/H] = -2), from the main-sequence turnoff point to red giants below the
bump. The spectroscopic stellar parameters, in particular stellar-parameter
differences between groups of stars, are in good agreement with broad-band and
Stroemgren photometry calibrated on the infrared-flux method. The spectroscopic
abundance analysis reveals, for the first time, systematic trends of iron
abundance with evolutionary stage. Iron is found to be 31% less abundant in the
turnoff-point stars than in the red giants. An abundance difference in lithium
is seen between the turnoff-point and warm subgiant stars. The impact of
potential systematic errors on these abundance trends (stellar parameters, the
hydrostatic and LTE approximations) is quantitatively evaluated and found not
to alter our conclusions significantly. Trends for various elements (Li, Mg,
Ca, Ti and Fe) are compared with stellar-structure models including the effects
of atomic diffusion and radiative acceleration. Such models are found to
describe the observed element-specific trends well, if extra (turbulent) mixing
just below the convection zone is introduced. It is concluded that atomic
diffusion and turbulent mixing are largely responsible for the sub-primordial
stellar lithium abundances of warm halo stars. Other consequences of atomic
diffusion in old metal-poor stars are also discussed.Comment: 20 pages (emulateapj), 11 figures, accepted for publication in Ap
Mesoscopic atomic entanglement for precision measurements beyond the standard quantum limit
Squeezing of quantum fluctuations by means of entanglement is a well
recognized goal in the field of quantum information science and precision
measurements. In particular, squeezing the fluctuations via entanglement
between two-level atoms can improve the precision of sensing, clocks,
metrology, and spectroscopy. Here, we demonstrate 3.4 dB of metrologically
relevant squeezing and entanglement for ~ 10^5 cold cesium atoms via a quantum
nondemolition (QND) measurement on the atom clock levels. We show that there is
an optimal degree of decoherence induced by the quantum measurement which
maximizes the generated entanglement. A two-color QND scheme used in this paper
is shown to have a number of advantages for entanglement generation as compared
to a single color QND measurement.Comment: 6 pages+suppl, PNAS forma
- …
