389 research outputs found
TAKE-OFF TECHNIQUE IN THE HIGH JUMP
INTRODUCTION: Alexander (1990) produced a model of jumping that predicts optimum techniques that are in good agreement with those used by high jumpers and long jumpers. We have refined Alexanderâs model and used it to more closely examine the take-off technique in the high jump. In particular, we examined the sensitivity of the athleteâs performance to deviations from the optimum technique, and the dependence of the optimum technique on the athleteâs leg strength and leg length. The results from this work are to be incorporated into a biomechanical analysis program conducted for Athletics Australia. The aim is to improve the performance of Australian high jumpers through relevant and timely biomechanical analysis. Similar work investigating the take-off in the long jump is also in progress.
METHODS: The mathematical model incorporates the geometry of the athleteâs legs and the properties of the leg extensor muscles. In this model, the leg angle is the angle between the ground and the line joining the foot to the hip; and the knee angle is the angle included between the thigh and the shank. The modelâs anthropometric values were adjusted to be representative of elite male and elite female athletes, and many jumps were then simulated with various run-up speeds and angles of the leg and knee at touchdown.
RESULTS: The simulations predict the observed differences between male and female athletes in their optimum take-off technique (Dapena et al., 1990).
Because of their longer legs and greater leg strength, male athletes should use a faster run-up and have a greater leg angle at touchdown than female athletes. For an individual athlete, jumping performance is only moderately sensitive to deviations from the optimum take-off technique. As training increases the athleteâs leg strength, the optimum jump performance improves, but the run-up speed must be faster, and the leg angle at touchdown must be increased. The simulations also predict the observed changes in jump performance, leg angle, and knee angle as an athlete uses a progressively faster run-up (Greig and Yeadon, 1997). It is planned to use the model to investigate the effect on jump performance of the athleteâs crural index, and of the design of the jumperâs shoe.
CONCLUSIONS: This relatively simple model accurately predicts the observed relationships between the performance parameters in elite high jumpers.
REFERENCES:
Alexander, R. (1990). Optimum Take-Off Techniques for High and Long Jumps.
Philosophical Transactions of the Royal Society of London, Series B 329, 3-10.
Dapena, J., McDonald, C., Cappaert, J. (1990). A Regression Analysis of High
Jumping Technique. International Journal of Sport Biomechanics 6, 246-260.
Greig, M. P., Yeadon, M. R. (1997). The Influence of the Approach on High Jump
Performance. Athletics Coach 30, 10-13
Pauli problem for a spin of arbitrary length: A simple method to determine its wave function
The problem of determining a pure state vector from measurements is investigated for a quantum spin of arbitrary length. Generically, only a finite number of wave functions is compatible with the intensities of the spin components in two different spatial directions, measured by a Stern-Gerlach apparatus. The remaining ambiguity can be resolved by one additional well-defined measurement. This method combines efficiency with simplicity: only a small number of quantities have to be measured and the experimental setup is elementary. Other approaches to determine state vectors from measurements, also known as the ââPauli problem,ââ are reviewed for both spin and particle systems
Loyal Americans
Pictured at the center of the tinted lithograph is an oval portrait of Abraham Lincoln. This portrait is surrounded by oval portraits of Union statesmen and military leaders (clockwise from top): General Scott, H. Hamlin, S. Cameron, G. Welles, M. Blair, General Butler, General Anderson, Colonel Ellsworth, C.B. Smith, E. Bates, S.P. Chase, and W.H. Seward.https://scholarsjunction.msstate.edu/fvw-prints/1115/thumbnail.jp
Vasopressinergic modulation of stress responses in the central amygdala of the Roman high-avoidance and low-avoidance rat
The central nucleus of the amygdala (CEA) is selectively involved in the passive component of the behavioral (immobility) and the accompanying parasympathetic response during conditioned, stressful environmental challenges. Vasopressinergic mechanisms in the brain seem to play a role in these stress responses. The effects of the neuropeptides arginine-8-vasopressin (AVP) and oxytocin (OXT) on modulating CEA activity during conditioned stress of inescapable footshock were studied in male Roman high-avoidance (RHA/Verh) and low-avoidance (RLA/Verh) rats, psychogenetically selected on the basis of shuttle-box acquisition behavior. In RLA/Verh rats, the cardiac and behavioral responses to the conditioned emotional stressor were bradycardia and immobility, suggesting an important role for the CEA in these rats. The RHA/Verh rats, however, failed to show any change in heart rate or immobility in response to a conditioned stress situation. The low dose of AVP (20 pg) in the CEA of conscious RLA/Verh rats caused an enhancement of the stress-induced bradycardiac and immobility response. However, the high dose of AVP (2 ng) and OXT (200 pg) attenuated the bradycardiac and immobility responses in the RLA/Verh rats. Infusion of AVP and OXT in the RHA/Verh rats failed to induce any change in heart rate nr immobility. Binding studies revealed that the AVP receptor selectively binds AVP with high affinity. In contrast, the OXT receptor recognizes both AVP and OXT with a similar (but lower) affinity. This suggests that the behavioral and autonomic responses of the high dose of AVP may be caused by OXT receptor stimulation. In conclusion, on the basis of the present results one may hypothesize that CEA differences in AVP and OXT innervation and/or receptor densities may contribute to the differences in coping strategy found in these animals.
Dual inhibition of glycolysis and glutaminolysis for synergistic therapy of rheumatoid arthritis
Abstract Background Synovial fibroblasts in rheumatoid arthritis (RAFLS) exhibit a pathological aberration of glycolysis and glutaminolysis. Henceforth, we aimed to investigate if dual inhibition of these pathways by phytobiological compound c28MS has the potential of synergistic therapy for arthritis by targeting both glucose and glutamine metabolism. Methods The presence of HK2 and GLS across various cell types and associated gene expression in human synovial cells and a murine model of arthritis was evaluated by scRNA-seq. The metabolic profiling of RAFLS cells was done using H1-nuclear magnetic resonance spectroscopy under glycolytic and glutaminolytic inhibitory conditions by incubating with 3-bromopyruvate, CB839, or dual inhibitor c28MS. FLS functional analysis was conducted under similar conditions. ELISA was employed for the quantification of IL-6, CCL2, and MMP3. K/BxN sera was administered to mice to induce arthritis for in vivo arthritis experiments. Results scRNA-seq analysis revealed that many fibroblasts expressed Hk2 along with Gls with several genes including Ptgs2, Hif1a, Timp1, Cxcl5, and Plod2 only associated with double-positive fibroblasts, suggesting that dual inhibition can be an attractive target for fibroblasts. Metabolomic and functional analysis revealed that c28MS decreased the aggressive behavior of RAFLS by targeting both upregulated glycolysis and glutaminolysis. c28MS administered in vivo significantly decreased the severity of arthritis in the K/BxN model. Conclusion Our findings imply that dual inhibition of glycolysis and glutaminolysis could be an effective approach for the treatment of RA. It also suggests that targeting more than one metabolic pathway can be a novel treatment approach in non-cancer diseases
On the Global Existence of Bohmian Mechanics
We show that the particle motion in Bohmian mechanics, given by the solution
of an ordinary differential equation, exists globally: For a large class of
potentials the singularities of the velocity field and infinity will not be
reached in finite time for typical initial values. A substantial part of the
analysis is based on the probabilistic significance of the quantum flux. We
elucidate the connection between the conditions necessary for global existence
and the self-adjointness of the Schr\"odinger Hamiltonian.Comment: 35 pages, LaTe
Corrections to the universal behavior of the Coulomb-blockade peak splitting for quantum dots separated by a finite barrier
Building upon earlier work on the relation between the dimensionless interdot
channel conductance g and the fractional Coulomb-blockade peak splitting f for
two electrostatically equivalent dots, we calculate the leading correction that
results from an interdot tunneling barrier that is not a delta-function but,
rather, has a finite height V and a nonzero width xi and can be approximated as
parabolic near its peak. We develop a new treatment of the problem for g much
less than 1 that starts from the single-particle eigenstates for the full
coupled-dot system. The finiteness of the barrier leads to a small upward shift
of the f-versus-g curve at small values of g. The shift is a consequence of the
fact that the tunneling matrix elements vary exponentially with the energies of
the states connected. Therefore, when g is small, it can pay to tunnel to
intermediate states with single-particle energies above the barrier height V.
The correction to the zero-width behavior does not affect agreement with recent
experimental results but may be important in future experiments.Comment: Title changed from ``Non-universal...'' to ``Corrections to the
universal...'' No other changes. 10 pages, 1 RevTeX file with 2 postscript
figures included using eps
Role of mitochondria-bound HK2 in rheumatoid arthritis fibroblast-like synoviocytes
BackgroundGlucose metabolism, specifically, hexokinase 2 (HK2), has a critical role in rheumatoid arthritis (RA) fibroblast-like synoviocyte (FLS) phenotype. HK2 localizes not only in the cytosol but also in the mitochondria, where it protects mitochondria against stress. We hypothesize that mitochondria-bound HK2 is a key regulator of RA FLS phenotype.MethodsHK2 localization was evaluated by confocal microscopy after FLS stimulation. RA FLSs were infected with Green fluorescent protein (GFP), full-length (FL)-HK2, or HK2 lacking its mitochondrial binding motif (HK2ÎN) expressing adenovirus (Ad). RA FLS was also incubated with methyl jasmonate (MJ; 2.5 mM), tofacitinib (1 ”M), or methotrexate (1 ”M). RA FLS was tested for migration and invasion and gene expression. Gene associations with HK2 expression were identified by examining single-cell RNA sequencing (scRNA-seq) data from murine models of arthritis. Mice were injected with K/BxN serum and given MJ. Ad-FLHK2 or Ad-HK2ÎN was injected into the knee of wild-type mice.ResultsCobalt chloride (CoCl2) and platelet-derived growth factor (PDGF) stimulation induced HK2 mitochondrial translocation. Overexpression of the HK2 mutant and MJ incubation reversed the invasive and migrative phenotype induced by FL-HK2 after PDGF stimulation, and MJ also decreased the expression of C-X-C Motif Chemokine Ligand 1 (CXCL1) and Collagen Type I Alpha 1 Chain (COL1A1). Of interest, tofacitinib but not methotrexate had an effect on HK2 dissociation from the mitochondria. In murine models, MJ treatment significantly decreased arthritis severity, whereas HK2FL was able to induce synovial hypertrophy as opposed to HK2ÎN.ConclusionOur results suggest that mitochondrial HK2 regulates the aggressive phenotype of RA FLS. New therapeutic approaches to dissociate HK2 from mitochondria offer a safer approach than global glycolysis inhibition
Analytic results for Gaussian wave packets in four model systems: I. Visualization of the kinetic energy
Using Gaussian wave packet solutions, we examine how the kinetic energy is
distributed in time-dependent solutions of the Schrodinger equation
corresponding to the cases of a free particle, a particle undergoing uniform
acceleration, a particle in a harmonic oscillator potential, and a system
corresponding to an unstable equilibrium. We find, for specific choices of
initial parameters, that as much as 90% of the kinetic energy can be localized
(at least conceptually) in the `front half' of such Gaussian wave packets, and
we visualize these effects.Comment: 22 pages, RevTeX, four .eps figures, to appear in Found. Phys. Lett.
Vol. 17, Dec. 200
Long-Time Behavior of Macroscopic Quantum Systems: Commentary Accompanying the English Translation of John von Neumann's 1929 Article on the Quantum Ergodic Theorem
The renewed interest in the foundations of quantum statistical mechanics in
recent years has led us to study John von Neumann's 1929 article on the quantum
ergodic theorem. We have found this almost forgotten article, which until now
has been available only in German, to be a treasure chest, and to be much
misunderstood. In it, von Neumann studied the long-time behavior of macroscopic
quantum systems. While one of the two theorems announced in his title, the one
he calls the "quantum H-theorem", is actually a much weaker statement than
Boltzmann's classical H-theorem, the other theorem, which he calls the "quantum
ergodic theorem", is a beautiful and very non-trivial result. It expresses a
fact we call "normal typicality" and can be summarized as follows: For a
"typical" finite family of commuting macroscopic observables, every initial
wave function from a micro-canonical energy shell so evolves that for
most times in the long run, the joint probability distribution of these
observables obtained from is close to their micro-canonical
distribution.Comment: 34 pages LaTeX, no figures; v2: minor improvements and additions. The
English translation of von Neumann's article is available as arXiv:1003.213
- âŠ