16 research outputs found

    The 2005 - 2007 Bala (Ankara, central Turkey) earthquakes : a case study for strike-slip fault terminations

    Get PDF
    An intense seismic activity has been observed after the Bala (Ankara, NW central Turkey) earthquakes (30 July 2005: Mw=5.3, 20 December 2007: Mw=5.4, and 26 December 2007: Mw=5.3), continuing up to the present. The epicenters and the focal mechanism solutions of the earthquakes indicate that the right lateral strike-slip Afşar fault, trending N55-60°W, is responsible for the main shocks. The Afşar fault is thought to be the NW continuation of the Tuzgölü fault zone, which is one of the main neotectonic elements in central Anatolia. On the other hand, the aftershock distributions of the 2005 event have a NNE trend, and those of the 2007 event show a NW trending. Some focal mechanism solutions of the 2005 Bala earthquake aftershocks indicate normal and oblique normal faulting that corresponds to the NNE-trending Karakeçili fault. It seems that seismic activation of the NNE-trending Karakeçili fault was triggered by the 2005 main shock (Mw=5.3) that occurred on the NW-trending right lateral strike-slip Afşar fault. The overall neotectonic framework is that the northwestern edge of the Tuzgölü fault zone, represented by the Afşar fault in Bala, terminates in an extensional system represented by the oblique-slip Karakeçili faul

    The 2005 - 2007 Bala (Ankara, central Turkey) earthquakes: a case study for strike-slip fault terminations

    Get PDF
    An intense seismic activity has been observed after the Bala (Ankara, NW central Turkey) earthquakes (30 July 2005: Mw=5.3, 20 December 2007: Mw=5.4, and 26 December 2007: Mw=5.3), continuing up to the present. The epicenters and the focal mechanism solutions of the earthquakes indicate that the right lateral strike-slip Afşar fault, trending N55-60°W, is responsible for the main shocks. The Afşar fault is thought to be the NW continuation of the Tuzgölü fault zone, which is one of the main neotectonic elements in central Anatolia. On the other hand, the aftershock distributions of the 2005 event have a NNE trend, and those of the 2007 event show a NW trending. Some focal mechanism solutions of the 2005 Bala earthquake aftershocks indicate normal and oblique normal faulting that corresponds to the NNE-trending Karakeçili fault. It seems that seismic activation of the NNE-trending Karakeçili fault was triggered by the 2005 main shock (Mw=5.3) that occurred on the NW trending right lateral strike-slip Afşar fault. The overall neotectonic framework is that the northwestern edge of the Tuzgölü fault zone, represented by the Afşar fault in Bala, terminates in an extensional system represented by the oblique-slip Karakeçili fault

    The seismotectonics of the Marmara region (Turkey): results from a microseismic experiment

    No full text
    The Marmara region is an active tectonic zone characterised by the transition between the dextral strike-slip regime of the North Anatolian Fault (NAF) and the extension regime of the Aegean Sea. Strong historical earthquakes (M > 7) and the presence of known seismic gaps imply a high level of seismic hazard. A synthesis of recent studies of active tectonics in the region is presented, including inland and underwater observations. The branching of the NAF is explained in terms of increasing influence of the extension. Historical information and instrumental seismicity are reinterpreted in order to have a critical appraisal of the existence of large seismic gaps in the central and eastern Marmara Sea. Focal mechanisms of strong earthquakes are used to obtain orientation and shape factor of the deviator of the stress tensor. The resulting tensor is in shear regime (sigma(2) vertical) but close to extension (R=0.93) with a, oriented N145 degrees 0. A microseismic experiment with 48 stations distributed around the Marmara Sea was carried out in October-December 1995. A total of 137 microearthquakes were located and 23 of those were selected to obtain focal mechanism solutions. The epicentral distribution indicates activity along the system of pull-apart basins north of the Marmara Sea. The segment between Marmara Sea and the Saros Bay, activated in 1912, and the Gulf of Izmit, site of the 1754 earthquake, are now silent. Seismic activity is very linear along the northern branch of the NAF, but it is more diffused on the Bursa and Iznik branches, southeast of the Marmara Sea. The stress tensor obtained from the focal mechanisms of the micro-earthquakes is compared to the one inverted from teleseismic data. The microseismic stress is compatible with a shear (intermediate) regime like the one obtained from strong earthquakes, though not as well constrained, one of the acceptable solutions having the same orientation but different shape (R=0.5). (C) 2000 Elsevier Science B.V. All rights reserved
    corecore